DataFrame.where(self, cond, other=nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False)
[source]
Replace values where the condition is False.
Parameters: |
|
---|---|
Returns: |
|
See also
DataFrame.mask()
The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond
is True
the element is used; otherwise the corresponding element from the DataFrame other
is used.
The signature for DataFrame.where()
differs from numpy.where()
. Roughly df1.where(m, df2)
is equivalent to np.where(m, df1, df2)
.
For further details and examples see the where
documentation in indexing.
>>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64
>>> s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
>>> s.where(s > 1, 10) 0 10 1 10 2 2 3 3 4 4 dtype: int64
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> df A B 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.DataFrame.where.html