W3cubDocs

/pandas 0.25

pandas.Index.array

Index.array

The ExtensionArray of the data backing this Series or Index.

New in version 0.24.0.

Returns:
ExtensionArray

An ExtensionArray of the values stored within. For extension types, this is the actual array. For NumPy native types, this is a thin (no copy) wrapper around numpy.ndarray.

.array differs .values which may require converting the data to a different form.

See also

Index.to_numpy
Similar method that always returns a NumPy array.
Series.to_numpy
Similar method that always returns a NumPy array.

Notes

This table lays out the different array types for each extension dtype within pandas.

dtype array type
category Categorical
period PeriodArray
interval IntervalArray
IntegerNA IntegerArray
datetime64[ns, tz] DatetimeArray

For any 3rd-party extension types, the array type will be an ExtensionArray.

For all remaining dtypes .array will be a arrays.NumpyExtensionArray wrapping the actual ndarray stored within. If you absolutely need a NumPy array (possibly with copying / coercing data), then use Series.to_numpy() instead.

Examples

For regular NumPy types like int, and float, a PandasArray is returned.

>>> pd.Series([1, 2, 3]).array
<PandasArray>
[1, 2, 3]
Length: 3, dtype: int64

For extension types, like Categorical, the actual ExtensionArray is returned

>>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
>>> ser.array
[a, b, a]
Categories (2, object): [a, b]

© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Index.array.html