Index.shift(self, periods=1, freq=None)
[source]
Shift index by desired number of time frequency increments.
This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times.
Parameters: |
|
---|---|
Returns: |
|
See also
Series.shift
This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex.
Put the first 5 month starts of 2011 into an index.
>>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS')
Shift the index by 10 days.
>>> month_starts.shift(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None)
The default value of freq
is the freq
attribute of the index, which is ‘MS’ (month start) in this example.
>>> month_starts.shift(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS')
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Index.shift.html