W3cubDocs

/pandas 0.25

pandas.interval_range

pandas.interval_range(start=None, end=None, periods=None, freq=None, name=None, closed='right') [source]

Return a fixed frequency IntervalIndex

Parameters:
start : numeric or datetime-like, default None

Left bound for generating intervals

end : numeric or datetime-like, default None

Right bound for generating intervals

periods : integer, default None

Number of periods to generate

freq : numeric, string, or DateOffset, default None

The length of each interval. Must be consistent with the type of start and end, e.g. 2 for numeric, or ‘5H’ for datetime-like. Default is 1 for numeric and ‘D’ for datetime-like.

name : string, default None

Name of the resulting IntervalIndex

closed : {‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’

Whether the intervals are closed on the left-side, right-side, both or neither.

Returns:
rng : IntervalIndex

See also

IntervalIndex
An Index of intervals that are all closed on the same side.

Notes

Of the four parameters start, end, periods, and freq, exactly three must be specified. If freq is omitted, the resulting IntervalIndex will have periods linearly spaced elements between start and end, inclusively.

To learn more about datetime-like frequency strings, please see this link.

Examples

Numeric start and end is supported.

>>> pd.interval_range(start=0, end=5)
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
              closed='right', dtype='interval[int64]')

Additionally, datetime-like input is also supported.

>>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
...                   end=pd.Timestamp('2017-01-04'))
IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03],
               (2017-01-03, 2017-01-04]],
              closed='right', dtype='interval[datetime64[ns]]')

The freq parameter specifies the frequency between the left and right. endpoints of the individual intervals within the IntervalIndex. For numeric start and end, the frequency must also be numeric.

>>> pd.interval_range(start=0, periods=4, freq=1.5)
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
              closed='right', dtype='interval[float64]')

Similarly, for datetime-like start and end, the frequency must be convertible to a DateOffset.

>>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
...                   periods=3, freq='MS')
IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01],
               (2017-03-01, 2017-04-01]],
              closed='right', dtype='interval[datetime64[ns]]')

Specify start, end, and periods; the frequency is generated automatically (linearly spaced).

>>> pd.interval_range(start=0, end=6, periods=4)
IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
          closed='right',
          dtype='interval[float64]')

The closed parameter specifies which endpoints of the individual intervals within the IntervalIndex are closed.

>>> pd.interval_range(end=5, periods=4, closed='both')
IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]],
              closed='both', dtype='interval[int64]')

© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.interval_range.html