pandas.interval_range(start=None, end=None, periods=None, freq=None, name=None, closed='right')
[source]
Return a fixed frequency IntervalIndex
Parameters: |
|
---|---|
Returns: |
|
See also
IntervalIndex
Of the four parameters start
, end
, periods
, and freq
, exactly three must be specified. If freq
is omitted, the resulting IntervalIndex
will have periods
linearly spaced elements between start
and end
, inclusively.
To learn more about datetime-like frequency strings, please see this link.
Numeric start
and end
is supported.
>>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], closed='right', dtype='interval[int64]')
Additionally, datetime-like input is also supported.
>>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... end=pd.Timestamp('2017-01-04')) IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03], (2017-01-03, 2017-01-04]], closed='right', dtype='interval[datetime64[ns]]')
The freq
parameter specifies the frequency between the left and right. endpoints of the individual intervals within the IntervalIndex
. For numeric start
and end
, the frequency must also be numeric.
>>> pd.interval_range(start=0, periods=4, freq=1.5) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], closed='right', dtype='interval[float64]')
Similarly, for datetime-like start
and end
, the frequency must be convertible to a DateOffset.
>>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... periods=3, freq='MS') IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01], (2017-03-01, 2017-04-01]], closed='right', dtype='interval[datetime64[ns]]')
Specify start
, end
, and periods
; the frequency is generated automatically (linearly spaced).
>>> pd.interval_range(start=0, end=6, periods=4) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], closed='right', dtype='interval[float64]')
The closed
parameter specifies which endpoints of the individual intervals within the IntervalIndex
are closed.
>>> pd.interval_range(end=5, periods=4, closed='both') IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]], closed='both', dtype='interval[int64]')
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.interval_range.html