pandas.io.json.build_table_schema(data, index=True, primary_key=None, version=True) [source]
Create a Table schema from data.
| Parameters: |
|
|---|---|
| Returns: |
|
See _as_json_table_type for conversion types. Timedeltas as converted to ISO8601 duration format with 9 decimal places after the seconds field for nanosecond precision.
Categoricals are converted to the any dtype, and use the enum field constraint to list the allowed values. The ordered attribute is included in an ordered field.
>>> df = pd.DataFrame(
... {'A': [1, 2, 3],
... 'B': ['a', 'b', 'c'],
... 'C': pd.date_range('2016-01-01', freq='d', periods=3),
... }, index=pd.Index(range(3), name='idx'))
>>> build_table_schema(df)
{'fields': [{'name': 'idx', 'type': 'integer'},
{'name': 'A', 'type': 'integer'},
{'name': 'B', 'type': 'string'},
{'name': 'C', 'type': 'datetime'}],
'pandas_version': '0.20.0',
'primaryKey': ['idx']}
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.io.json.build_table_schema.html