pandas.notnull(obj) [source]
Detect non-missing values for an array-like object.
This function takes a scalar or array-like object and indicates whether values are valid (not missing, which is NaN in numeric arrays, None or NaN in object arrays, NaT in datetimelike).
| Parameters: |
|
|---|---|
| Returns: |
|
See also
isna
Series.notna
DataFrame.notna
Index.notna
Scalar arguments (including strings) result in a scalar boolean.
>>> pd.notna('dog')
True
>>> pd.notna(np.nan) False
ndarrays result in an ndarray of booleans.
>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]])
>>> array
array([[ 1., nan, 3.],
[ 4., 5., nan]])
>>> pd.notna(array)
array([[ True, False, True],
[ True, True, False]])
For indexes, an ndarray of booleans is returned.
>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None,
... "2017-07-08"])
>>> index
DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],
dtype='datetime64[ns]', freq=None)
>>> pd.notna(index)
array([ True, True, False, True])
For Series and DataFrame, the same type is returned, containing booleans.
>>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']])
>>> df
0 1 2
0 ant bee cat
1 dog None fly
>>> pd.notna(df)
0 1 2
0 True True True
1 True False True
>>> pd.notna(df[1]) 0 True 1 False Name: 1, dtype: bool
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.notnull.html