pandas.read_sql_table
-
pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None)
[source]
-
Read SQL database table into a DataFrame.
Given a table name and a SQLAlchemy connectable, returns a DataFrame. This function does not support DBAPI connections.
Parameters: |
-
table_name : str -
Name of SQL table in database. -
con : SQLAlchemy connectable or str -
A database URI could be provided as as str. SQLite DBAPI connection mode not supported. -
schema : str, default None -
Name of SQL schema in database to query (if database flavor supports this). Uses default schema if None (default). -
index_col : str or list of str, optional, default: None -
Column(s) to set as index(MultiIndex). -
coerce_float : bool, default True -
Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. -
parse_dates : list or dict, default None -
- List of column names to parse as dates.
- Dict of
{column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps. - Dict of
{column_name: arg dict} , where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite. -
columns : list, default None -
List of column names to select from SQL table. -
chunksize : int, default None -
If specified, returns an iterator where chunksize is the number of rows to include in each chunk. |
Returns: |
- DataFrame
-
A SQL table is returned as two-dimensional data structure with labeled axes. |
See also
-
read_sql_query
- Read SQL query into a DataFrame.
-
read_sql
- Read SQL query or database table into a DataFrame.
Notes
Any datetime values with time zone information will be converted to UTC.
Examples
>>> pd.read_sql_table('table_name', 'postgres:///db_name') # doctest:+SKIP