Series.any(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs)
[source]
Return whether any element is True, potentially over an axis.
Returns False unless there at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).
Parameters: |
|
---|---|
Returns: |
|
See also
numpy.any
Series.any
Series.all
DataFrame.any
DataFrame.all
Series
For Series input, the output is a scalar indicating whether any element is True.
>>> pd.Series([False, False]).any() False >>> pd.Series([True, False]).any() True >>> pd.Series([]).any() False >>> pd.Series([np.nan]).any() False >>> pd.Series([np.nan]).any(skipna=False) True
DataFrame
Whether each column contains at least one True element (the default).
>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) >>> df A B C 0 1 0 0 1 2 2 0
>>> df.any() A True B True C False dtype: bool
Aggregating over the columns.
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) >>> df A B 0 True 1 1 False 2
>>> df.any(axis='columns') 0 True 1 True dtype: bool
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) >>> df A B 0 True 1 1 False 0
>>> df.any(axis='columns') 0 True 1 False dtype: bool
Aggregating over the entire DataFrame with axis=None
.
>>> df.any(axis=None) True
any
for an empty DataFrame is an empty Series.
>>> pd.DataFrame([]).any() Series([], dtype: bool)
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Series.any.html