Series.describe(self, percentiles=None, include=None, exclude=None)
[source]
Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN
values.
Analyzes both numeric and object series, as well as DataFrame
column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.
Parameters: |
|
---|---|
Returns: |
|
See also
DataFrame.count
DataFrame.max
DataFrame.min
DataFrame.mean
DataFrame.std
DataFrame.select_dtypes
For numeric data, the result’s index will include count
, mean
, std
, min
, max
as well as lower, 50
and upper percentiles. By default the lower percentile is 25
and the upper percentile is 75
. The 50
percentile is the same as the median.
For object data (e.g. strings or timestamps), the result’s index will include count
, unique
, top
, and freq
. The top
is the most common value. The freq
is the most common value’s frequency. Timestamps also include the first
and last
items.
If multiple object values have the highest count, then the count
and top
results will be arbitrarily chosen from among those with the highest count.
For mixed data types provided via a DataFrame
, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. If include='all'
is provided as an option, the result will include a union of attributes of each type.
The include
and exclude
parameters can be used to limit which columns in a DataFrame
are analyzed for the output. The parameters are ignored when analyzing a Series
.
Describing a numeric Series
.
>>> s = pd.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 dtype: float64
Describing a categorical Series
.
>>> s = pd.Series(['a', 'a', 'b', 'c']) >>> s.describe() count 4 unique 3 top a freq 2 dtype: object
Describing a timestamp Series
.
>>> s = pd.Series([ ... np.datetime64("2000-01-01"), ... np.datetime64("2010-01-01"), ... np.datetime64("2010-01-01") ... ]) >>> s.describe() count 3 unique 2 top 2010-01-01 00:00:00 freq 2 first 2000-01-01 00:00:00 last 2010-01-01 00:00:00 dtype: object
Describing a DataFrame
. By default only numeric fields are returned.
>>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']), ... 'numeric': [1, 2, 3], ... 'object': ['a', 'b', 'c'] ... }) >>> df.describe() numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0
Describing all columns of a DataFrame
regardless of data type.
>>> df.describe(include='all') categorical numeric object count 3 3.0 3 unique 3 NaN 3 top f NaN c freq 1 NaN 1 mean NaN 2.0 NaN std NaN 1.0 NaN min NaN 1.0 NaN 25% NaN 1.5 NaN 50% NaN 2.0 NaN 75% NaN 2.5 NaN max NaN 3.0 NaN
Describing a column from a DataFrame
by accessing it as an attribute.
>>> df.numeric.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Name: numeric, dtype: float64
Including only numeric columns in a DataFrame
description.
>>> df.describe(include=[np.number]) numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0
Including only string columns in a DataFrame
description.
>>> df.describe(include=[np.object]) object count 3 unique 3 top c freq 1
Including only categorical columns from a DataFrame
description.
>>> df.describe(include=['category']) categorical count 3 unique 3 top f freq 1
Excluding numeric columns from a DataFrame
description.
>>> df.describe(exclude=[np.number]) categorical object count 3 3 unique 3 3 top f c freq 1 1
Excluding object columns from a DataFrame
description.
>>> df.describe(exclude=[np.object]) categorical numeric count 3 3.0 unique 3 NaN top f NaN freq 1 NaN mean NaN 2.0 std NaN 1.0 min NaN 1.0 25% NaN 1.5 50% NaN 2.0 75% NaN 2.5 max NaN 3.0
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Series.describe.html