Series.max(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
[source]
Return the maximum of the values for the requested axis.
If you want the index of the maximum, useidxmax
. This is the equivalent of the numpy.ndarray
method argmax
. Parameters: |
|
---|---|
Returns: |
|
See also
Series.sum
Series.min
Series.max
Series.idxmin
Series.idxmax
DataFrame.sum
DataFrame.min
DataFrame.max
DataFrame.idxmin
DataFrame.idxmax
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
>>> s.max() 8
Max using level names, as well as indices.
>>> s.max(level='blooded') blooded warm 4 cold 8 Name: legs, dtype: int64
>>> s.max(level=0) blooded warm 4 cold 8 Name: legs, dtype: int64
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Series.max.html