W3cubDocs

/pandas 0.25

pandas.Series.nlargest

Series.nlargest(self, n=5, keep='first') [source]

Return the largest n elements.

Parameters:
n : int, default 5

Return this many descending sorted values.

keep : {‘first’, ‘last’, ‘all’}, default ‘first’

When there are duplicate values that cannot all fit in a Series of n elements:

  • first : return the first n occurrences in order

    of appearance.

  • last : return the last n occurrences in reverse

    order of appearance.

  • all : keep all occurrences. This can result in a Series of

    size larger than n.

Returns:
Series

The n largest values in the Series, sorted in decreasing order.

See also

Series.nsmallest
Get the n smallest elements.
Series.sort_values
Sort Series by values.
Series.head
Return the first n rows.

Notes

Faster than .sort_values(ascending=False).head(n) for small n relative to the size of the Series object.

Examples

>>> countries_population = {"Italy": 59000000, "France": 65000000,
...                         "Malta": 434000, "Maldives": 434000,
...                         "Brunei": 434000, "Iceland": 337000,
...                         "Nauru": 11300, "Tuvalu": 11300,
...                         "Anguilla": 11300, "Monserat": 5200}
>>> s = pd.Series(countries_population)
>>> s
Italy       59000000
France      65000000
Malta         434000
Maldives      434000
Brunei        434000
Iceland       337000
Nauru          11300
Tuvalu         11300
Anguilla       11300
Monserat        5200
dtype: int64

The n largest elements where n=5 by default.

>>> s.nlargest()
France      65000000
Italy       59000000
Malta         434000
Maldives      434000
Brunei        434000
dtype: int64

The n largest elements where n=3. Default keep value is ‘first’ so Malta will be kept.

>>> s.nlargest(3)
France    65000000
Italy     59000000
Malta       434000
dtype: int64

The n largest elements where n=3 and keeping the last duplicates. Brunei will be kept since it is the last with value 434000 based on the index order.

>>> s.nlargest(3, keep='last')
France      65000000
Italy       59000000
Brunei        434000
dtype: int64

The n largest elements where n=3 with all duplicates kept. Note that the returned Series has five elements due to the three duplicates.

>>> s.nlargest(3, keep='all')
France      65000000
Italy       59000000
Malta         434000
Maldives      434000
Brunei        434000
dtype: int64

© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Series.nlargest.html