Series.truncate(self, before=None, after=None, axis=None, copy=True) [source]
Truncate a Series or DataFrame before and after some index value.
This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.
| Parameters: |
|
|---|---|
| Returns: |
|
See also
DataFrame.loc
DataFrame.iloc
If the index being truncated contains only datetime values, before and after may be specified as strings instead of Timestamps.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'],
... 'B': ['f', 'g', 'h', 'i', 'j'],
... 'C': ['k', 'l', 'm', 'n', 'o']},
... index=[1, 2, 3, 4, 5])
>>> df
A B C
1 a f k
2 b g l
3 c h m
4 d i n
5 e j o
>>> df.truncate(before=2, after=4) A B C 2 b g l 3 c h m 4 d i n
The columns of a DataFrame can be truncated.
>>> df.truncate(before="A", after="B", axis="columns") A B 1 a f 2 b g 3 c h 4 d i 5 e j
For Series, only rows can be truncated.
>>> df['A'].truncate(before=2, after=4) 2 b 3 c 4 d Name: A, dtype: object
The index values in truncate can be datetimes or string dates.
>>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s')
>>> df = pd.DataFrame(index=dates, data={'A': 1})
>>> df.tail()
A
2016-01-31 23:59:56 1
2016-01-31 23:59:57 1
2016-01-31 23:59:58 1
2016-01-31 23:59:59 1
2016-02-01 00:00:00 1
>>> df.truncate(before=pd.Timestamp('2016-01-05'),
... after=pd.Timestamp('2016-01-10')).tail()
A
2016-01-09 23:59:56 1
2016-01-09 23:59:57 1
2016-01-09 23:59:58 1
2016-01-09 23:59:59 1
2016-01-10 00:00:00 1
Because the index is a DatetimeIndex containing only dates, we can specify before and after as strings. They will be coerced to Timestamps before truncation.
>>> df.truncate('2016-01-05', '2016-01-10').tail()
A
2016-01-09 23:59:56 1
2016-01-09 23:59:57 1
2016-01-09 23:59:58 1
2016-01-09 23:59:59 1
2016-01-10 00:00:00 1
Note that truncate assumes a 0 value for any unspecified time component (midnight). This differs from partial string slicing, which returns any partially matching dates.
>>> df.loc['2016-01-05':'2016-01-10', :].tail()
A
2016-01-10 23:59:55 1
2016-01-10 23:59:56 1
2016-01-10 23:59:57 1
2016-01-10 23:59:58 1
2016-01-10 23:59:59 1
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Series.truncate.html