pandas.SparseArray
-
class pandas.SparseArray(data, sparse_index=None, index=None, fill_value=None, kind='integer', dtype=None, copy=False)
[source]
-
An ExtensionArray for storing sparse data.
Changed in version 0.24.0: Implements the ExtensionArray interface.
Parameters: |
-
data : array-like -
A dense array of values to store in the SparseArray. This may contain fill_value . -
sparse_index : SparseIndex, optional -
index : Index -
fill_value : scalar, optional -
Elements in data that are fill_value are not stored in the SparseArray. For memory savings, this should be the most common value in data . By default, fill_value depends on the dtype of data :
data.dtype | na_value |
float | np.nan |
int | 0 |
bool | False |
datetime64 | pd.NaT |
timedelta64 | pd.NaT | The fill value is potentially specified in three ways. In order of precedence, these are - The
fill_value argument -
dtype.fill_value if fill_value is None and dtype is a SparseDtype
-
data.dtype.fill_value if fill_value is None and dtype is not a SparseDtype and data is a SparseArray . -
kind : {‘integer’, ‘block’}, default ‘integer’ -
The type of storage for sparse locations. - ‘block’: Stores a
block and block_length for each contiguous span of sparse values. This is best when sparse data tends to be clumped together, with large regions of fill-value values between sparse values. - ‘integer’: uses an integer to store the location of each sparse value.
-
dtype : np.dtype or SparseDtype, optional -
The dtype to use for the SparseArray. For numpy dtypes, this determines the dtype of self.sp_values . For SparseDtype, this determines self.sp_values and self.fill_value . -
copy : bool, default False -
Whether to explicitly copy the incoming data array. |
Attributes
Methods