pandas.TimedeltaIndex.ceil
-
TimedeltaIndex.ceil(self, freq, ambiguous='raise', nonexistent='raise')
[source]
-
Perform ceil operation on the data to the specified freq
.
Parameters: |
-
freq : str or Offset -
The frequency level to ceil the index to. Must be a fixed frequency like ‘S’ (second) not ‘ME’ (month end). See frequency aliases for a list of possible freq values. -
ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’ -
Only relevant for DatetimeIndex: - ‘infer’ will attempt to infer fall dst-transition hours based on order
- bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
- ‘NaT’ will return NaT where there are ambiguous times
- ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times
-
nonexistent : ‘shift_forward’, ‘shift_backward’, ‘NaT’, timedelta, default ‘raise’ -
A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - ‘shift_forward’ will shift the nonexistent time forward to the closest existing time
- ‘shift_backward’ will shift the nonexistent time backward to the closest existing time
- ‘NaT’ will return NaT where there are nonexistent times
- timedelta objects will shift nonexistent times by the timedelta
- ‘raise’ will raise an NonExistentTimeError if there are nonexistent times
|
Returns: |
- DatetimeIndex, TimedeltaIndex, or Series
-
Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series. |
Raises: |
-
ValueError if the freq cannot be converted. |
Examples
DatetimeIndex
>>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
>>> rng
DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
'2018-01-01 12:01:00'],
dtype='datetime64[ns]', freq='T')
>>> rng.ceil('H')
DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
'2018-01-01 13:00:00'],
dtype='datetime64[ns]', freq=None)
Series
>>> pd.Series(rng).dt.ceil("H")
0 2018-01-01 12:00:00
1 2018-01-01 12:00:00
2 2018-01-01 13:00:00
dtype: datetime64[ns]