torch.backends controls the behavior of various backends that PyTorch supports.
These backends include:
torch.backends.cudatorch.backends.cudnntorch.backends.mkltorch.backends.mkldnntorch.backends.openmptorch.backends.cuda.is_built() [source]
Returns whether PyTorch is built with CUDA support. Note that this doesn’t necessarily mean CUDA is available; just that if this PyTorch binary were run a machine with working CUDA drivers and devices, we would be able to use it.
torch.backends.cuda.matmul.allow_tf32 A bool that controls whether TensorFloat-32 tensor cores may be used in matrix multiplications on Ampere or newer GPUs. See TensorFloat-32(TF32) on Ampere devices.
torch.backends.cuda.cufft_plan_cache cufft_plan_cache caches the cuFFT plans
size A readonly int that shows the number of plans currently in the cuFFT plan cache.
max_size A int that controls cache capacity of cuFFT plan.
clear() Clears the cuFFT plan cache.
torch.backends.cudnn.version() [source]
Returns the version of cuDNN
torch.backends.cudnn.is_available() [source]
Returns a bool indicating if CUDNN is currently available.
torch.backends.cudnn.enabled A bool that controls whether cuDNN is enabled.
torch.backends.cudnn.allow_tf32 A bool that controls where TensorFloat-32 tensor cores may be used in cuDNN convolutions on Ampere or newer GPUs. See TensorFloat-32(TF32) on Ampere devices.
torch.backends.cudnn.deterministic A bool that, if True, causes cuDNN to only use deterministic convolution algorithms. See also torch.is_deterministic() and torch.set_deterministic().
torch.backends.cudnn.benchmark A bool that, if True, causes cuDNN to benchmark multiple convolution algorithms and select the fastest.
torch.backends.mkl.is_available() [source]
Returns whether PyTorch is built with MKL support.
torch.backends.mkldnn.is_available() [source]
Returns whether PyTorch is built with MKL-DNN support.
torch.backends.openmp.is_available() [source]
Returns whether PyTorch is built with OpenMP support.
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.7.0/backends.html