/PyTorch

AvgPool1d

class torch.nn.AvgPool1d(kernel_size: Union[T, Tuple[T]], stride: Union[T, Tuple[T]] = None, padding: Union[T, Tuple[T]] = 0, ceil_mode: bool = False, count_include_pad: bool = True) [source]

Applies a 1D average pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C, L)$ , output $(N, C, L_{out})$ and kernel_size $k$ can be precisely described as:

$\text{out}(N_i, C_j, l) = \frac{1}{k} \sum_{m=0}^{k-1} \text{input}(N_i, C_j, \text{stride} \times l + m)$

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points.

The parameters kernel_size, stride, padding can each be an int or a one-element tuple.

Parameters
• kernel_size – the size of the window
• stride – the stride of the window. Default value is kernel_size
• ceil_mode – when True, will use ceil instead of floor to compute the output shape
• count_include_pad – when True, will include the zero-padding in the averaging calculation
Shape:
• Input: $(N, C, L_{in})$
• Output: $(N, C, L_{out})$ , where

$L_{out} = \left\lfloor \frac{L_{in} + 2 \times \text{padding} - \text{kernel\_size}}{\text{stride}} + 1\right\rfloor$

Examples:

>>> # pool with window of size=3, stride=2
>>> m = nn.AvgPool1d(3, stride=2)
>>> m(torch.tensor([[[1.,2,3,4,5,6,7]]]))
tensor([[[ 2.,  4.,  6.]]])