class torch.nn.BCEWithLogitsLoss(weight: Optional[torch.Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean', pos_weight: Optional[torch.Tensor] = None) [source]
This loss combines a Sigmoid layer and the BCELoss in one single class. This version is more numerically stable than using a plain Sigmoid followed by a BCELoss as, by combining the operations into one layer, we take advantage of the log-sum-exp trick for numerical stability.
The unreduced (i.e. with reduction set to 'none') loss can be described as:
where is the batch size. If reduction is not 'none' (default 'mean'), then
This is used for measuring the error of a reconstruction in for example an auto-encoder. Note that the targets t[i] should be numbers between 0 and 1.
It’s possible to trade off recall and precision by adding weights to positive examples. In the case of multi-label classification the loss can be described as:
where is the class number ( for multi-label binary classification, for single-label binary classification), is the number of the sample in the batch and is the weight of the positive answer for the class .
increases the recall, increases the precision.
For example, if a dataset contains 100 positive and 300 negative examples of a single class, then pos_weight for the class should be equal to . The loss would act as if the dataset contains positive examples.
Examples:
>>> target = torch.ones([10, 64], dtype=torch.float32) # 64 classes, batch size = 10 >>> output = torch.full([10, 64], 1.5) # A prediction (logit) >>> pos_weight = torch.ones([64]) # All weights are equal to 1 >>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight) >>> criterion(output, target) # -log(sigmoid(1.5)) tensor(0.2014)
nbatch.reduction). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field size_average is set to False, the losses are instead summed for each minibatch. Ignored when reduce is False. Default: True
reduction). By default, the losses are averaged or summed over observations for each minibatch depending on size_average. When reduce is False, returns a loss per batch element instead and ignores size_average. Default: True
'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'
reduction is 'none', then , same shape as input.Examples:
>>> loss = nn.BCEWithLogitsLoss() >>> input = torch.randn(3, requires_grad=True) >>> target = torch.empty(3).random_(2) >>> output = loss(input, target) >>> output.backward()
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.7.0/generated/torch.nn.BCEWithLogitsLoss.html