class torch.nn.Embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False, _weight: Optional[torch.Tensor] = None)
[source]
A simple lookup table that stores embeddings of a fixed dictionary and size.
This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings.
padding_idx
(initialized to zeros) whenever it encounters the index.max_norm
is renormalized to have norm max_norm
.max_norm
option. Default 2
.False
.True
, gradient w.r.t. weight
matrix will be a sparse tensor. See Notes for more details regarding sparse gradients.~Embedding.weight (Tensor) – the learnable weights of the module of shape (num_embeddings, embedding_dim) initialized from
*
is the input shape and
Note
Keep in mind that only a limited number of optimizers support sparse gradients: currently it’s optim.SGD
(CUDA
and CPU
), optim.SparseAdam
(CUDA
and CPU
) and optim.Adagrad
(CPU
)
Note
With padding_idx
set, the embedding vector at padding_idx
is initialized to all zeros. However, note that this vector can be modified afterwards, e.g., using a customized initialization method, and thus changing the vector used to pad the output. The gradient for this vector from Embedding
is always zero.
Examples:
>>> # an Embedding module containing 10 tensors of size 3 >>> embedding = nn.Embedding(10, 3) >>> # a batch of 2 samples of 4 indices each >>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]]) >>> embedding(input) tensor([[[-0.0251, -1.6902, 0.7172], [-0.6431, 0.0748, 0.6969], [ 1.4970, 1.3448, -0.9685], [-0.3677, -2.7265, -0.1685]], [[ 1.4970, 1.3448, -0.9685], [ 0.4362, -0.4004, 0.9400], [-0.6431, 0.0748, 0.6969], [ 0.9124, -2.3616, 1.1151]]]) >>> # example with padding_idx >>> embedding = nn.Embedding(10, 3, padding_idx=0) >>> input = torch.LongTensor([[0,2,0,5]]) >>> embedding(input) tensor([[[ 0.0000, 0.0000, 0.0000], [ 0.1535, -2.0309, 0.9315], [ 0.0000, 0.0000, 0.0000], [-0.1655, 0.9897, 0.0635]]])
classmethod from_pretrained(embeddings, freeze=True, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False)
[source]
Creates Embedding instance from given 2-dimensional FloatTensor.
num_embeddings
, second as embedding_dim
.True
, the tensor does not get updated in the learning process. Equivalent to embedding.weight.requires_grad = False
. Default: True
2
.False
.Examples:
>>> # FloatTensor containing pretrained weights >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]]) >>> embedding = nn.Embedding.from_pretrained(weight) >>> # Get embeddings for index 1 >>> input = torch.LongTensor([1]) >>> embedding(input) tensor([[ 4.0000, 5.1000, 6.3000]])
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.7.0/generated/torch.nn.Embedding.html