class torch.nn.MarginRankingLoss(margin: float = 0.0, size_average=None, reduce=None, reduction: str = 'mean')
[source]
Creates a criterion that measures the loss given inputs , , two 1D mini-batch Tensors
, and a label 1D mini-batch tensor (containing 1 or -1).
If then it assumed the first input should be ranked higher (have a larger value) than the second input, and vice-versa for .
The loss function for each pair of samples in the mini-batch is:
reduction
). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field size_average
is set to False
, the losses are instead summed for each minibatch. Ignored when reduce is False
. Default: True
reduction
). By default, the losses are averaged or summed over observations for each minibatch depending on size_average
. When reduce
is False
, returns a loss per batch element instead and ignores size_average
. Default: True
'none'
| 'mean'
| 'sum'
. 'none'
: no reduction will be applied, 'mean'
: the sum of the output will be divided by the number of elements in the output, 'sum'
: the output will be summed. Note: size_average
and reduce
are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction
. Default: 'mean'
N
is the batch size.reduction
is 'none'
, then .Examples:
>>> loss = nn.MarginRankingLoss() >>> input1 = torch.randn(3, requires_grad=True) >>> input2 = torch.randn(3, requires_grad=True) >>> target = torch.randn(3).sign() >>> output = loss(input1, input2, target) >>> output.backward()
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.7.0/generated/torch.nn.MarginRankingLoss.html