W3cubDocs

/PyTorch

MaxPool1d

class torch.nn.MaxPool1d(kernel_size: Union[T, Tuple[T, ...]], stride: Optional[Union[T, Tuple[T, ...]]] = None, padding: Union[T, Tuple[T, ...]] = 0, dilation: Union[T, Tuple[T, ...]] = 1, return_indices: bool = False, ceil_mode: bool = False) [source]

Applies a 1D max pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N,C,L)(N, C, L) and output (N,C,Lout)(N, C, L_{out}) can be precisely described as:

out(Ni,Cj,k)=maxm=0,,kernel_size1input(Ni,Cj,stride×k+m)out(N_i, C_j, k) = \max_{m=0, \ldots, \text{kernel\_size} - 1} input(N_i, C_j, stride \times k + m)

If padding is non-zero, then the input is implicitly padded with negative infinity on both sides for padding number of points. dilation is the stride between the elements within the sliding window. This link has a nice visualization of the pooling parameters.

Parameters
  • kernel_size – The size of the sliding window, must be > 0.
  • stride – The stride of the sliding window, must be > 0. Default value is kernel_size.
  • padding – Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.
  • dilation – The stride between elements within a sliding window, must be > 0.
  • return_indices – If True, will return the argmax along with the max values. Useful for torch.nn.MaxUnpool1d later
  • ceil_mode – If True, will use ceil instead of floor to compute the output shape. This ensures that every element in the input tensor is covered by a sliding window.
Shape:
  • Input: (N,C,Lin)(N, C, L_{in})
  • Output: (N,C,Lout)(N, C, L_{out}) , where

    Lout=Lin+2×paddingdilation×(kernel_size1)1stride+1L_{out} = \left\lfloor \frac{L_{in} + 2 \times \text{padding} - \text{dilation} \times (\text{kernel\_size} - 1) - 1}{\text{stride}} + 1\right\rfloor

Examples:

>>> # pool of size=3, stride=2
>>> m = nn.MaxPool1d(3, stride=2)
>>> input = torch.randn(20, 16, 50)
>>> output = m(input)

© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.7.0/generated/torch.nn.MaxPool1d.html