/PyTorch

# MaxPool3d

class torch.nn.MaxPool3d(kernel_size: Union[T, Tuple[T, ...]], stride: Optional[Union[T, Tuple[T, ...]]] = None, padding: Union[T, Tuple[T, ...]] = 0, dilation: Union[T, Tuple[T, ...]] = 1, return_indices: bool = False, ceil_mode: bool = False) [source]

Applies a 3D max pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C, D, H, W)$ , output $(N, C, D_{out}, H_{out}, W_{out})$ and kernel_size $(kD, kH, kW)$ can be precisely described as:

\begin{aligned} \text{out}(N_i, C_j, d, h, w) ={} & \max_{k=0, \ldots, kD-1} \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\ & \text{input}(N_i, C_j, \text{stride} \times d + k, \text{stride} \times h + m, \text{stride} \times w + n) \end{aligned}

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of what dilation does.

The parameters kernel_size, stride, padding, dilation can either be:

• a single int – in which case the same value is used for the depth, height and width dimension
• a tuple of three ints – in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension
Parameters
• kernel_size – the size of the window to take a max over
• stride – the stride of the window. Default value is kernel_size
• padding – implicit zero padding to be added on all three sides
• dilation – a parameter that controls the stride of elements in the window
• return_indices – if True, will return the max indices along with the outputs. Useful for torch.nn.MaxUnpool3d later
• ceil_mode – when True, will use ceil instead of floor to compute the output shape
Shape:
• Input: $(N, C, D_{in}, H_{in}, W_{in})$
• Output: $(N, C, D_{out}, H_{out}, W_{out})$ , where

$D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding} - \text{dilation} \times (\text{kernel\_size} - 1) - 1}{\text{stride}} + 1\right\rfloor$
$H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding} - \text{dilation} \times (\text{kernel\_size} - 1) - 1}{\text{stride}} + 1\right\rfloor$
$W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding} - \text{dilation} \times (\text{kernel\_size} - 1) - 1}{\text{stride}} + 1\right\rfloor$

Examples:

>>> # pool of square window of size=3, stride=2
>>> m = nn.MaxPool3d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.MaxPool3d((3, 2, 2), stride=(2, 1, 2))
>>> input = torch.randn(20, 16, 50,44, 31)
>>> output = m(input)


© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.7.0/generated/torch.nn.MaxPool3d.html