W3cubDocs

/PyTorch

PairwiseDistance

class torch.nn.PairwiseDistance(p: float = 2.0, eps: float = 1e-06, keepdim: bool = False) [source]

Computes the batchwise pairwise distance between vectors v1v_1 , v2v_2 using the p-norm:

xp=(i=1nxip)1/p.\Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}.
Parameters
  • p (real) – the norm degree. Default: 2
  • eps (float, optional) – Small value to avoid division by zero. Default: 1e-6
  • keepdim (bool, optional) – Determines whether or not to keep the vector dimension. Default: False
Shape:
  • Input1: (N,D)(N, D) where D = vector dimension
  • Input2: (N,D)(N, D) , same shape as the Input1
  • Output: (N)(N) . If keepdim is True, then (N,1)(N, 1) .
Examples::
>>> pdist = nn.PairwiseDistance(p=2)
>>> input1 = torch.randn(100, 128)
>>> input2 = torch.randn(100, 128)
>>> output = pdist(input1, input2)

© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.7.0/generated/torch.nn.PairwiseDistance.html