class torch.nn.TransformerEncoder(encoder_layer, num_layers, norm=None) [source]
TransformerEncoder is a stack of N encoder layers
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6) >>> src = torch.rand(10, 32, 512) >>> out = transformer_encoder(src)
forward(src: torch.Tensor, mask: Optional[torch.Tensor] = None, src_key_padding_mask: Optional[torch.Tensor] = None) → torch.Tensor [source]
Pass the input through the encoder layers in turn.
see the docs in Transformer class.
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.7.0/generated/torch.nn.TransformerEncoder.html