class torch.nn.UpsamplingBilinear2d(size: Optional[Union[T, Tuple[T, T]]] = None, scale_factor: Optional[Union[T, Tuple[T, T]]] = None) [source]
Applies a 2D bilinear upsampling to an input signal composed of several input channels.
To specify the scale, it takes either the size or the scale_factor as it’s constructor argument.
When size is given, it is the output size of the image (h, w).
Warning
This class is deprecated in favor of interpolate(). It is equivalent to nn.functional.interpolate(..., mode='bilinear', align_corners=True).
Examples:
>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
>>> input
tensor([[[[ 1., 2.],
[ 3., 4.]]]])
>>> m = nn.UpsamplingBilinear2d(scale_factor=2)
>>> m(input)
tensor([[[[ 1.0000, 1.3333, 1.6667, 2.0000],
[ 1.6667, 2.0000, 2.3333, 2.6667],
[ 2.3333, 2.6667, 3.0000, 3.3333],
[ 3.0000, 3.3333, 3.6667, 4.0000]]]])
© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.7.0/generated/torch.nn.UpsamplingBilinear2d.html