selfStart Construct Self-starting Nonlinear ModelsConstruct self-starting nonlinear models to be used in nls, etc. Via function initial to compute approximate parameter values from data, such models are “self-starting”, i.e., do not need a start argument in, e.g., nls().
selfStart(model, initial, parameters, template)
model | a function object defining a nonlinear model or a nonlinear |
initial | a function object, taking arguments |
parameters | a character vector specifying the terms on the right hand side of |
template | an optional prototype for the calling sequence of the returned object, passed as the |
nls() calls getInitial and the initial function for these self-starting models.
This function is generic; methods functions can be written to handle specific classes of objects.
a function object of class "selfStart", for the formula method obtained by applying deriv to the right hand side of the model formula. An initial attribute (defined by the initial argument) is added to the function to calculate starting estimates for the parameters in the model automatically.
José Pinheiro and Douglas Bates
Each of the following are "selfStart" models (with examples) SSasymp, SSasympOff, SSasympOrig, SSbiexp, SSfol, SSfpl, SSgompertz, SSlogis, SSmicmen, SSweibull.
Further, package nlme's nlsList.
## self-starting logistic model
## The "initializer" (finds initial values for parameters from data):
initLogis <- function(mCall, data, LHS) {
xy <- data.frame(sortedXyData(mCall[["input"]], LHS, data))
if(nrow(xy) < 4)
stop("too few distinct input values to fit a logistic model")
z <- xy[["y"]]
## transform to proportion, i.e. in (0,1) :
rng <- range(z); dz <- diff(rng)
z <- (z - rng[1L] + 0.05 * dz)/(1.1 * dz)
xy[["z"]] <- log(z/(1 - z)) # logit transformation
aux <- coef(lm(x ~ z, xy))
pars <- coef(nls(y ~ 1/(1 + exp((xmid - x)/scal)),
data = xy,
start = list(xmid = aux[[1L]], scal = aux[[2L]]),
algorithm = "plinear"))
setNames(pars[c(".lin", "xmid", "scal")], nm = mCall[c("Asym", "xmid", "scal")])
}
SSlogis <- selfStart(~ Asym/(1 + exp((xmid - x)/scal)),
initial = initLogis,
parameters = c("Asym", "xmid", "scal"))
# 'first.order.log.model' is a function object defining a first order
# compartment model
# 'first.order.log.initial' is a function object which calculates initial
# values for the parameters in 'first.order.log.model'
#
# self-starting first order compartment model
## Not run:
SSfol <- selfStart(first.order.log.model, first.order.log.initial)
## End(Not run)
## Explore the self-starting models already available in R's "stats":
pos.st <- which("package:stats" == search())
mSS <- apropos("^SS..", where = TRUE, ignore.case = FALSE)
(mSS <- unname(mSS[names(mSS) == pos.st]))
fSS <- sapply(mSS, get, pos = pos.st, mode = "function")
all(sapply(fSS, inherits, "selfStart")) # -> TRUE
## Show the argument list of each self-starting function:
str(fSS, give.attr = FALSE)
Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.