W3cubDocs

/Rust

Struct std::collections::hash_map::HashMap

pub struct HashMap<K, V, S = RandomState> { /* fields omitted */ }

A hash map implemented with quadratic probing and SIMD lookup.

By default, HashMap uses a hashing algorithm selected to provide resistance against HashDoS attacks. The algorithm is randomly seeded, and a reasonable best-effort is made to generate this seed from a high quality, secure source of randomness provided by the host without blocking the program. Because of this, the randomness of the seed depends on the output quality of the system's random number generator when the seed is created. In particular, seeds generated when the system's entropy pool is abnormally low such as during system boot may be of a lower quality.

The default hashing algorithm is currently SipHash 1-3, though this is subject to change at any point in the future. While its performance is very competitive for medium sized keys, other hashing algorithms will outperform it for small keys such as integers as well as large keys such as long strings, though those algorithms will typically not protect against attacks such as HashDoS.

The hashing algorithm can be replaced on a per-HashMap basis using the default, with_hasher, and with_capacity_and_hasher methods. Many alternative algorithms are available on crates.io, such as the fnv crate.

It is required that the keys implement the Eq and Hash traits, although this can frequently be achieved by using #[derive(PartialEq, Eq, Hash)]. If you implement these yourself, it is important that the following property holds:

k1 == k2 -> hash(k1) == hash(k2)

In other words, if two keys are equal, their hashes must be equal.

It is a logic error for a key to be modified in such a way that the key's hash, as determined by the Hash trait, or its equality, as determined by the Eq trait, changes while it is in the map. This is normally only possible through Cell, RefCell, global state, I/O, or unsafe code.

The hash table implementation is a Rust port of Google's SwissTable. The original C++ version of SwissTable can be found here, and this CppCon talk gives an overview of how the algorithm works.

Examples

use std::collections::HashMap;

// Type inference lets us omit an explicit type signature (which
// would be `HashMap<String, String>` in this example).
let mut book_reviews = HashMap::new();

// Review some books.
book_reviews.insert(
    "Adventures of Huckleberry Finn".to_string(),
    "My favorite book.".to_string(),
);
book_reviews.insert(
    "Grimms' Fairy Tales".to_string(),
    "Masterpiece.".to_string(),
);
book_reviews.insert(
    "Pride and Prejudice".to_string(),
    "Very enjoyable.".to_string(),
);
book_reviews.insert(
    "The Adventures of Sherlock Holmes".to_string(),
    "Eye lyked it alot.".to_string(),
);

// Check for a specific one.
// When collections store owned values (String), they can still be
// queried using references (&str).
if !book_reviews.contains_key("Les Misérables") {
    println!("We've got {} reviews, but Les Misérables ain't one.",
             book_reviews.len());
}

// oops, this review has a lot of spelling mistakes, let's delete it.
book_reviews.remove("The Adventures of Sherlock Holmes");

// Look up the values associated with some keys.
let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
for &book in &to_find {
    match book_reviews.get(book) {
        Some(review) => println!("{}: {}", book, review),
        None => println!("{} is unreviewed.", book)
    }
}

// Look up the value for a key (will panic if the key is not found).
println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]);

// Iterate over everything.
for (book, review) in &book_reviews {
    println!("{}: \"{}\"", book, review);
}

HashMap also implements an Entry API, which allows for more complex methods of getting, setting, updating and removing keys and their values:

use std::collections::HashMap;

// type inference lets us omit an explicit type signature (which
// would be `HashMap<&str, u8>` in this example).
let mut player_stats = HashMap::new();

fn random_stat_buff() -> u8 {
    // could actually return some random value here - let's just return
    // some fixed value for now
    42
}

// insert a key only if it doesn't already exist
player_stats.entry("health").or_insert(100);

// insert a key using a function that provides a new value only if it
// doesn't already exist
player_stats.entry("defence").or_insert_with(random_stat_buff);

// update a key, guarding against the key possibly not being set
let stat = player_stats.entry("attack").or_insert(100);
*stat += random_stat_buff();

The easiest way to use HashMap with a custom key type is to derive Eq and Hash. We must also derive PartialEq.

use std::collections::HashMap;

#[derive(Hash, Eq, PartialEq, Debug)]
struct Viking {
    name: String,
    country: String,
}

impl Viking {
    /// Creates a new Viking.
    fn new(name: &str, country: &str) -> Viking {
        Viking { name: name.to_string(), country: country.to_string() }
    }
}

// Use a HashMap to store the vikings' health points.
let mut vikings = HashMap::new();

vikings.insert(Viking::new("Einar", "Norway"), 25);
vikings.insert(Viking::new("Olaf", "Denmark"), 24);
vikings.insert(Viking::new("Harald", "Iceland"), 12);

// Use derived implementation to print the status of the vikings.
for (viking, health) in &vikings {
    println!("{:?} has {} hp", viking, health);
}

A HashMap with fixed list of elements can be initialized from an array:

use std::collections::HashMap;

let timber_resources: HashMap<&str, i32> = [("Norway", 100), ("Denmark", 50), ("Iceland", 10)]
    .iter().cloned().collect();
// use the values stored in map

Implementations

impl<K, V> HashMap<K, V, RandomState>[src]

pub fn new() -> HashMap<K, V, RandomState>[src]

Creates an empty HashMap.

The hash map is initially created with a capacity of 0, so it will not allocate until it is first inserted into.

Examples

use std::collections::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();

pub fn with_capacity(capacity: usize) -> HashMap<K, V, RandomState>[src]

Creates an empty HashMap with the specified capacity.

The hash map will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash map will not allocate.

Examples

use std::collections::HashMap;
let mut map: HashMap<&str, i32> = HashMap::with_capacity(10);

impl<K, V, S> HashMap<K, V, S>[src]

pub fn with_hasher(hash_builder: S) -> HashMap<K, V, S>[src]1.7.0

Creates an empty HashMap which will use the given hash builder to hash keys.

The created map has the default initial capacity.

Warning: hash_builder is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

The hash_builder passed should implement the BuildHasher trait for the HashMap to be useful, see its documentation for details.

Examples

use std::collections::HashMap;
use std::collections::hash_map::RandomState;

let s = RandomState::new();
let mut map = HashMap::with_hasher(s);
map.insert(1, 2);

pub fn with_capacity_and_hasher(
    capacity: usize,
    hash_builder: S
) -> HashMap<K, V, S>
[src]1.7.0

Creates an empty HashMap with the specified capacity, using hash_builder to hash the keys.

The hash map will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash map will not allocate.

Warning: hash_builder is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

The hash_builder passed should implement the BuildHasher trait for the HashMap to be useful, see its documentation for details.

Examples

use std::collections::HashMap;
use std::collections::hash_map::RandomState;

let s = RandomState::new();
let mut map = HashMap::with_capacity_and_hasher(10, s);
map.insert(1, 2);

pub fn capacity(&self) -> usize[src]

Returns the number of elements the map can hold without reallocating.

This number is a lower bound; the HashMap<K, V> might be able to hold more, but is guaranteed to be able to hold at least this many.

Examples

use std::collections::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert!(map.capacity() >= 100);

pub fn keys(&self) -> Keys<'_, K, V>

Notable traits for Keys<'a, K, V>

impl<'a, K, V> Iterator for Keys<'a, K, V>
    type Item = &'a K;
[src]

An iterator visiting all keys in arbitrary order. The iterator element type is &'a K.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for key in map.keys() {
    println!("{}", key);
}

pub fn values(&self) -> Values<'_, K, V>

Notable traits for Values<'a, K, V>

impl<'a, K, V> Iterator for Values<'a, K, V>
    type Item = &'a V;
[src]

An iterator visiting all values in arbitrary order. The iterator element type is &'a V.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for val in map.values() {
    println!("{}", val);
}

pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>

Notable traits for ValuesMut<'a, K, V>

impl<'a, K, V> Iterator for ValuesMut<'a, K, V>
    type Item = &'a mut V;
[src]1.10.0

An iterator visiting all values mutably in arbitrary order. The iterator element type is &'a mut V.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();

map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for val in map.values_mut() {
    *val = *val + 10;
}

for val in map.values() {
    println!("{}", val);
}

pub fn iter(&self) -> Iter<'_, K, V>

Notable traits for Iter<'a, K, V>

impl<'a, K, V> Iterator for Iter<'a, K, V>
    type Item = (&'a K, &'a V);
[src]

An iterator visiting all key-value pairs in arbitrary order. The iterator element type is (&'a K, &'a V).

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for (key, val) in map.iter() {
    println!("key: {} val: {}", key, val);
}

pub fn iter_mut(&mut self) -> IterMut<'_, K, V>

Notable traits for IterMut<'a, K, V>

impl<'a, K, V> Iterator for IterMut<'a, K, V>
    type Item = (&'a K, &'a mut V);
[src]

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. The iterator element type is (&'a K, &'a mut V).

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

// Update all values
for (_, val) in map.iter_mut() {
    *val *= 2;
}

for (key, val) in &map {
    println!("key: {} val: {}", key, val);
}

pub fn len(&self) -> usize[src]

Returns the number of elements in the map.

Examples

use std::collections::HashMap;

let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);

pub fn is_empty(&self) -> bool[src]

Returns true if the map contains no elements.

Examples

use std::collections::HashMap;

let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());

pub fn drain(&mut self) -> Drain<'_, K, V>

Notable traits for Drain<'a, K, V>

impl<'a, K, V> Iterator for Drain<'a, K, V>
    type Item = (K, V);
[src]1.6.0

Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.

Examples

use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");

for (k, v) in a.drain().take(1) {
    assert!(k == 1 || k == 2);
    assert!(v == "a" || v == "b");
}

assert!(a.is_empty());

pub fn clear(&mut self)[src]

Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.

Examples

use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.clear();
assert!(a.is_empty());

pub fn hasher(&self) -> &S

Notable traits for &'_ mut F

impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized, 
    type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized, 
    type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]1.9.0

Returns a reference to the map's BuildHasher.

Examples

use std::collections::HashMap;
use std::collections::hash_map::RandomState;

let hasher = RandomState::new();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &RandomState = map.hasher();

impl<K, V, S> HashMap<K, V, S> where
    K: Eq + Hash,
    S: BuildHasher
[src]

pub fn reserve(&mut self, additional: usize)[src]

Reserves capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new allocation size overflows usize.

Examples

use std::collections::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
map.reserve(10);

pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>[src]

🔬 This is a nightly-only experimental API. (try_reserve #48043)new API

Tries to reserve capacity for at least additional more elements to be inserted in the given HashMap<K,V>. The collection may reserve more space to avoid frequent reallocations.

Errors

If the capacity overflows, or the allocator reports a failure, then an error is returned.

Examples

#![feature(try_reserve)]
use std::collections::HashMap;
let mut map: HashMap<&str, isize> = HashMap::new();
map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");

pub fn shrink_to_fit(&mut self)[src]

Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

Examples

use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);

pub fn shrink_to(&mut self, min_capacity: usize)[src]

🔬 This is a nightly-only experimental API. (shrink_to #56431)new API

Shrinks the capacity of the map with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

Panics if the current capacity is smaller than the supplied minimum capacity.

Examples

#![feature(shrink_to)]
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to(10);
assert!(map.capacity() >= 10);
map.shrink_to(0);
assert!(map.capacity() >= 2);

pub fn entry(&mut self, key: K) -> Entry<'_, K, V>[src]

Gets the given key's corresponding entry in the map for in-place manipulation.

Examples

use std::collections::HashMap;

let mut letters = HashMap::new();

for ch in "a short treatise on fungi".chars() {
    let counter = letters.entry(ch).or_insert(0);
    *counter += 1;
}

assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);

pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V> where
    K: Borrow<Q>,
    Q: Hash + Eq
[src]

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);

pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)> where
    K: Borrow<Q>,
    Q: Hash + Eq
[src]1.40.0

Returns the key-value pair corresponding to the supplied key.

The supplied key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);

pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool where
    K: Borrow<Q>,
    Q: Hash + Eq
[src]

Returns true if the map contains a value for the specified key.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);

pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V> where
    K: Borrow<Q>,
    Q: Hash + Eq
[src]

Returns a mutable reference to the value corresponding to the key.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
    *x = "b";
}
assert_eq!(map[&1], "b");

pub fn insert(&mut self, k: K, v: V) -> Option<V>[src]

Inserts a key-value pair into the map.

If the map did not have this key present, None is returned.

If the map did have this key present, the value is updated, and the old value is returned. The key is not updated, though; this matters for types that can be == without being identical. See the module-level documentation for more.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);

map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");

pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V> where
    K: Borrow<Q>,
    Q: Hash + Eq
[src]

Removes a key from the map, returning the value at the key if the key was previously in the map.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);

pub fn remove_entry<Q: ?Sized>(&mut self, k: &Q) -> Option<(K, V)> where
    K: Borrow<Q>,
    Q: Hash + Eq
[src]1.27.0

Removes a key from the map, returning the stored key and value if the key was previously in the map.

The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove(&1), None);

pub fn retain<F>(&mut self, f: F) where
    F: FnMut(&K, &mut V) -> bool
[src]1.18.0

Retains only the elements specified by the predicate.

In other words, remove all pairs (k, v) such that f(&k,&mut v) returns false.

Examples

use std::collections::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x|(x, x*10)).collect();
map.retain(|&k, _| k % 2 == 0);
assert_eq!(map.len(), 4);

pub fn into_keys(self) -> IntoKeys<K, V>

Notable traits for IntoKeys<K, V>

impl<K, V> Iterator for IntoKeys<K, V>
    type Item = K;
[src]

🔬 This is a nightly-only experimental API. (map_into_keys_values #75294)

Creates a consuming iterator visiting all the keys in arbitrary order. The map cannot be used after calling this. The iterator element type is K.

Examples

#![feature(map_into_keys_values)]
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

let vec: Vec<&str> = map.into_keys().collect();

pub fn into_values(self) -> IntoValues<K, V>

Notable traits for IntoValues<K, V>

impl<K, V> Iterator for IntoValues<K, V>
    type Item = V;
[src]

🔬 This is a nightly-only experimental API. (map_into_keys_values #75294)

Creates a consuming iterator visiting all the values in arbitrary order. The map cannot be used after calling this. The iterator element type is V.

Examples

#![feature(map_into_keys_values)]
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

let vec: Vec<i32> = map.into_values().collect();

impl<K, V, S> HashMap<K, V, S> where
    S: BuildHasher
[src]

pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S>[src]

🔬 This is a nightly-only experimental API. (hash_raw_entry #56167)

Creates a raw entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched. After this, insertions into a vacant entry still require an owned key to be provided.

Raw entries are useful for such exotic situations as:

  • Hash memoization
  • Deferring the creation of an owned key until it is known to be required
  • Using a search key that doesn't work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Because raw entries provide much more low-level control, it's much easier to put the HashMap into an inconsistent state which, while memory-safe, will cause the map to produce seemingly random results. Higher-level and more foolproof APIs like entry should be preferred when possible.

In particular, the hash used to initialized the raw entry must still be consistent with the hash of the key that is ultimately stored in the entry. This is because implementations of HashMap may need to recompute hashes when resizing, at which point only the keys are available.

Raw entries give mutable access to the keys. This must not be used to modify how the key would compare or hash, as the map will not re-evaluate where the key should go, meaning the keys may become "lost" if their location does not reflect their state. For instance, if you change a key so that the map now contains keys which compare equal, search may start acting erratically, with two keys randomly masking each other. Implementations are free to assume this doesn't happen (within the limits of memory-safety).

pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S>[src]

🔬 This is a nightly-only experimental API. (hash_raw_entry #56167)

Creates a raw immutable entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched.

This is useful for

  • Hash memoization
  • Using a search key that doesn't work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Unless you are in such a situation, higher-level and more foolproof APIs like get should be preferred.

Immutable raw entries have very limited use; you might instead want raw_entry_mut.

Trait Implementations

impl<K: Clone, V: Clone, S: Clone> Clone for HashMap<K, V, S>[src]

impl<K, V, S> Debug for HashMap<K, V, S> where
    K: Debug,
    V: Debug
[src]

impl<K, V, S> Default for HashMap<K, V, S> where
    S: Default
[src]

fn default() -> HashMap<K, V, S>[src]

Creates an empty HashMap<K, V, S>, with the Default value for the hasher.

impl<K, V, S> Eq for HashMap<K, V, S> where
    K: Eq + Hash,
    V: Eq,
    S: BuildHasher
[src]

impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap<K, V, S> where
    K: Eq + Hash + Copy,
    V: Copy,
    S: BuildHasher
[src]1.4.0

impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S> where
    K: Eq + Hash,
    S: BuildHasher
[src]

Inserts all new key-values from the iterator and replaces values with existing keys with new values returned from the iterator.

impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S> where
    K: Eq + Hash,
    S: BuildHasher + Default
[src]

impl<K, Q: ?Sized, V, S, '_> Index<&'_ Q> for HashMap<K, V, S> where
    K: Eq + Hash + Borrow<Q>,
    Q: Eq + Hash,
    S: BuildHasher
[src]

type Output = V

The returned type after indexing.

fn index(&self, key: &Q) -> &V

Notable traits for &'_ mut F

impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized, 
    type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized, 
    type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]

Returns a reference to the value corresponding to the supplied key.

Panics

Panics if the key is not present in the HashMap.

impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S>[src]

type Item = (&'a K, &'a V)

The type of the elements being iterated over.

type IntoIter = Iter<'a, K, V>

Which kind of iterator are we turning this into?

impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S>[src]

type Item = (&'a K, &'a mut V)

The type of the elements being iterated over.

type IntoIter = IterMut<'a, K, V>

Which kind of iterator are we turning this into?

impl<K, V, S> IntoIterator for HashMap<K, V, S>[src]

type Item = (K, V)

The type of the elements being iterated over.

type IntoIter = IntoIter<K, V>

Which kind of iterator are we turning this into?

fn into_iter(self) -> IntoIter<K, V>

Notable traits for IntoIter<K, V>

impl<K, V> Iterator for IntoIter<K, V>
    type Item = (K, V);
[src]

Creates a consuming iterator, that is, one that moves each key-value pair out of the map in arbitrary order. The map cannot be used after calling this.

Examples

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

// Not possible with .iter()
let vec: Vec<(&str, i32)> = map.into_iter().collect();

impl<K, V, S> PartialEq<HashMap<K, V, S>> for HashMap<K, V, S> where
    K: Eq + Hash,
    V: PartialEq,
    S: BuildHasher
[src]

impl<K, V, S> UnwindSafe for HashMap<K, V, S> where
    K: UnwindSafe,
    V: UnwindSafe,
    S: UnwindSafe
[src]1.36.0

Auto Trait Implementations

impl<K, V, S> RefUnwindSafe for HashMap<K, V, S> where
    K: RefUnwindSafe,
    S: RefUnwindSafe,
    V: RefUnwindSafe

impl<K, V, S> Send for HashMap<K, V, S> where
    K: Send,
    S: Send,
    V: Send

impl<K, V, S> Sync for HashMap<K, V, S> where
    K: Sync,
    S: Sync,
    V: Sync

impl<K, V, S> Unpin for HashMap<K, V, S> where
    K: Unpin,
    S: Unpin,
    V: Unpin

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<I> IntoIterator for I where
    I: Iterator
[src]

type Item = <I as Iterator>::Item

The type of the elements being iterated over.

type IntoIter = I

Which kind of iterator are we turning this into?

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/collections/hash_map/struct.HashMap.html