The 64-bit floating point type.
impl f64
[src]pub fn is_nan(self) -> bool
[src]Returns true
if this value is NaN
and false otherwise.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; assert!(nan.is_nan()); assert!(!f.is_nan());
pub fn is_infinite(self) -> bool
[src]Returns true
if this value is positive infinity or negative infinity and false otherwise.
use std::f64; let f = 7.0f64; let inf = f64::INFINITY; let neg_inf = f64::NEG_INFINITY; let nan = f64::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());
pub fn is_finite(self) -> bool
[src]Returns true
if this number is neither infinite nor NaN
.
use std::f64; let f = 7.0f64; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());
pub fn is_normal(self) -> bool
[src]Returns true
if the number is neither zero, infinite, subnormal, or NaN
.
use std::f64; let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 let max = f64::MAX; let lower_than_min = 1.0e-308_f64; let zero = 0.0f64; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f64::NAN.is_normal()); assert!(!f64::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());
pub fn classify(self) -> FpCategory
[src]Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory; use std::f64; let num = 12.4_f64; let inf = f64::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);
pub fn is_sign_positive(self) -> bool
[src]Returns true
if and only if self
has a positive sign, including +0.0
, NaN
s with positive sign bit and positive infinity.
let f = 7.0_f64; let g = -7.0_f64; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive());
pub fn is_sign_negative(self) -> bool
[src]Returns true
if and only if self
has a negative sign, including -0.0
, NaN
s with negative sign bit and negative infinity.
let f = 7.0_f64; let g = -7.0_f64; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative());
pub fn recip(self) -> f64
[src]Takes the reciprocal (inverse) of a number, 1/x
.
let x = 2.0_f64; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference < 1e-10);
pub fn to_degrees(self) -> f64
[src]Converts radians to degrees.
use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10);
pub fn to_radians(self) -> f64
[src]Converts degrees to radians.
use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10);
pub fn max(self, other: f64) -> f64
[src]Returns the maximum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.max(y), y);
If one of the arguments is NaN, then the other argument is returned.
pub fn min(self, other: f64) -> f64
[src]Returns the minimum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.min(y), x);
If one of the arguments is NaN, then the other argument is returned.
pub fn to_bits(self) -> u64
[src]Raw transmutation to u64
.
This is currently identical to transmute::<f64, u64>(self)
on all platforms.
See from_bits
for some discussion of the portability of this operation (there are almost no issues).
Note that this function is distinct from as
casting, which attempts to preserve the numeric value, and not the bitwise value.
assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting! assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
pub fn from_bits(v: u64) -> f64
[src]Raw transmutation from u64
.
This is currently identical to transmute::<u64, f64>(v)
on all platforms. It turns out this is incredibly portable, for two reasons:
However there is one caveat: prior to the 2008 version of IEEE-754, how to interpret the NaN signaling bit wasn't actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn't (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
Rather than trying to preserve signaling-ness cross-platform, this implementation favours preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.
If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.
If the input isn't NaN, then there is no portability concern.
If you don't care about signalingness (very likely), then there is no portability concern.
Note that this function is distinct from as
casting, which attempts to preserve the numeric value, and not the bitwise value.
use std::f64; let v = f64::from_bits(0x4029000000000000); let difference = (v - 12.5).abs(); assert!(difference <= 1e-5);
impl f64
[src]pub fn floor(self) -> f64
[src]Returns the largest integer less than or equal to a number.
let f = 3.99_f64; let g = 3.0_f64; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);
pub fn ceil(self) -> f64
[src]Returns the smallest integer greater than or equal to a number.
let f = 3.01_f64; let g = 4.0_f64; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);
pub fn round(self) -> f64
[src]Returns the nearest integer to a number. Round half-way cases away from 0.0
.
let f = 3.3_f64; let g = -3.3_f64; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);
pub fn trunc(self) -> f64
[src]Returns the integer part of a number.
let f = 3.3_f64; let g = -3.7_f64; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);
pub fn fract(self) -> f64
[src]Returns the fractional part of a number.
let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);
pub fn abs(self) -> f64
[src]Computes the absolute value of self
. Returns NAN
if the number is NAN
.
use std::f64; let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); assert!(f64::NAN.abs().is_nan());
pub fn signum(self) -> f64
[src]Returns a number that represents the sign of self
.
1.0
if the number is positive, +0.0
or INFINITY
-1.0
if the number is negative, -0.0
or NEG_INFINITY
NAN
if the number is NAN
use std::f64; let f = 3.5_f64; assert_eq!(f.signum(), 1.0); assert_eq!(f64::NEG_INFINITY.signum(), -1.0); assert!(f64::NAN.signum().is_nan());
pub fn mul_add(self, a: f64, b: f64) -> f64
[src]Fused multiply-add. Computes (self * a) + b
with only one rounding error, yielding a more accurate result than an unfused multiply-add.
Using mul_add
can be more performant than an unfused multiply-add if the target architecture has a dedicated fma
CPU instruction.
let m = 10.0_f64; let x = 4.0_f64; let b = 60.0_f64; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference < 1e-10);
pub fn div_euc(self, rhs: f64) -> f64
[src]Calculates Euclidean division, the matching method for mod_euc
.
This computes the integer n
such that self = n * rhs + self.mod_euc(rhs)
. In other words, the result is self / rhs
rounded to the integer n
such that self >= n * rhs
.
#![feature(euclidean_division)] let a: f64 = 7.0; let b = 4.0; assert_eq!(a.div_euc(b), 1.0); // 7.0 > 4.0 * 1.0 assert_eq!((-a).div_euc(b), -2.0); // -7.0 >= 4.0 * -2.0 assert_eq!(a.div_euc(-b), -1.0); // 7.0 >= -4.0 * -1.0 assert_eq!((-a).div_euc(-b), 2.0); // -7.0 >= -4.0 * 2.0
pub fn mod_euc(self, rhs: f64) -> f64
[src]Calculates the Euclidean modulo (self mod rhs), which is never negative.
In particular, the return value r
satisfies 0.0 <= r < rhs.abs()
in most cases. However, due to a floating point round-off error it can result in r == rhs.abs()
, violating the mathematical definition, if self
is much smaller than rhs.abs()
in magnitude and self < 0.0
. This result is not an element of the function's codomain, but it is the closest floating point number in the real numbers and thus fulfills the property self == self.div_euc(rhs) * rhs + self.mod_euc(rhs)
approximatively.
#![feature(euclidean_division)] let a: f64 = 7.0; let b = 4.0; assert_eq!(a.mod_euc(b), 3.0); assert_eq!((-a).mod_euc(b), 1.0); assert_eq!(a.mod_euc(-b), 3.0); assert_eq!((-a).mod_euc(-b), 1.0); // limitation due to round-off error assert!((-std::f64::EPSILON).mod_euc(3.0) != 0.0);
pub fn powi(self, n: i32) -> f64
[src]Raises a number to an integer power.
Using this function is generally faster than using powf
let x = 2.0_f64; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference < 1e-10);
pub fn powf(self, n: f64) -> f64
[src]Raises a number to a floating point power.
let x = 2.0_f64; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10);
pub fn sqrt(self) -> f64
[src]Takes the square root of a number.
Returns NaN if self
is a negative number.
let positive = 4.0_f64; let negative = -4.0_f64; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference < 1e-10); assert!(negative.sqrt().is_nan());
pub fn exp(self) -> f64
[src]Returns e^(self)
, (the exponential function).
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);
pub fn exp2(self) -> f64
[src]Returns 2^(self)
.
let f = 2.0_f64; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference < 1e-10);
pub fn ln(self) -> f64
[src]Returns the natural logarithm of the number.
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);
pub fn log(self, base: f64) -> f64
[src]Returns the logarithm of the number with respect to an arbitrary base.
The result may not be correctly rounded owing to implementation details; self.log2()
can produce more accurate results for base 2, and self.log10()
can produce more accurate results for base 10.
let five = 5.0_f64; // log5(5) - 1 == 0 let abs_difference = (five.log(5.0) - 1.0).abs(); assert!(abs_difference < 1e-10);
pub fn log2(self) -> f64
[src]Returns the base 2 logarithm of the number.
let two = 2.0_f64; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10);
pub fn log10(self) -> f64
[src]Returns the base 10 logarithm of the number.
let ten = 10.0_f64; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10);
pub fn abs_sub(self, other: f64) -> f64
[src]The positive difference of two numbers.
self <= other
: 0:0
self - other
let x = 3.0_f64; let y = -3.0_f64; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);
pub fn cbrt(self) -> f64
[src]Takes the cubic root of a number.
let x = 8.0_f64; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10);
pub fn hypot(self, other: f64) -> f64
[src]Calculates the length of the hypotenuse of a right-angle triangle given legs of length x
and y
.
let x = 2.0_f64; let y = 3.0_f64; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference < 1e-10);
pub fn sin(self) -> f64
[src]Computes the sine of a number (in radians).
use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10);
pub fn cos(self) -> f64
[src]Computes the cosine of a number (in radians).
use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10);
pub fn tan(self) -> f64
[src]Computes the tangent of a number (in radians).
use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14);
pub fn asin(self) -> f64
[src]Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10);
pub fn acos(self) -> f64
[src]Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10);
pub fn atan(self) -> f64
[src]Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
let f = 1.0_f64; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10);
pub fn atan2(self, other: f64) -> f64
[src]Computes the four quadrant arctangent of self
(y
) and other
(x
) in radians.
x = 0
, y = 0
: 0
x >= 0
: arctan(y/x)
-> [-pi/2, pi/2]
y >= 0
: arctan(y/x) + pi
-> (pi/2, pi]
y < 0
: arctan(y/x) - pi
-> (-pi, -pi/2)
use std::f64; let pi = f64::consts::PI; // Positive angles measured counter-clockwise // from positive x axis // -pi/4 radians (45 deg clockwise) let x1 = 3.0_f64; let y1 = -3.0_f64; // 3pi/4 radians (135 deg counter-clockwise) let x2 = -3.0_f64; let y2 = 3.0_f64; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 < 1e-10); assert!(abs_difference_2 < 1e-10);
pub fn sin_cos(self) -> (f64, f64)
[src]Simultaneously computes the sine and cosine of the number, x
. Returns (sin(x), cos(x))
.
use std::f64; let x = f64::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);
pub fn exp_m1(self) -> f64
[src]Returns e^(self) - 1
in a way that is accurate even if the number is close to zero.
let x = 7.0_f64; // e^(ln(7)) - 1 let abs_difference = (x.ln().exp_m1() - 6.0).abs(); assert!(abs_difference < 1e-10);
pub fn ln_1p(self) -> f64
[src]Returns ln(1+n)
(natural logarithm) more accurately than if the operations were performed separately.
use std::f64; let x = f64::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference < 1e-10);
pub fn sinh(self) -> f64
[src]Hyperbolic sine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10);
pub fn cosh(self) -> f64
[src]Hyperbolic cosine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10);
pub fn tanh(self) -> f64
[src]Hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10);
pub fn asinh(self) -> f64
[src]Inverse hyperbolic sine function.
let x = 1.0_f64; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);
pub fn acosh(self) -> f64
[src]Inverse hyperbolic cosine function.
let x = 1.0_f64; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);
pub fn atanh(self) -> f64
[src]Inverse hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference < 1.0e-10);
impl FromStr for f64
[src]type Err = ParseFloatError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<f64, ParseFloatError>
[src]Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
Leading and trailing whitespace represent an error.
Err(ParseFloatError)
if the string did not represent a valid number. Otherwise, Ok(n)
where n
is the floating-point number represented by src
.
impl RemAssign<f64> for f64
[src]fn rem_assign(&mut self, other: f64)
[src]Performs the %=
operation.
impl<'a> RemAssign<&'a f64> for f64
[src]fn rem_assign(&mut self, other: &'a f64)
[src]Performs the %=
operation.
impl<'a> DivAssign<&'a f64> for f64
[src]fn div_assign(&mut self, other: &'a f64)
[src]Performs the /=
operation.
impl DivAssign<f64> for f64
[src]fn div_assign(&mut self, other: f64)
[src]Performs the /=
operation.
impl<'a> MulAssign<&'a f64> for f64
[src]fn mul_assign(&mut self, other: &'a f64)
[src]Performs the *=
operation.
impl MulAssign<f64> for f64
[src]fn mul_assign(&mut self, other: f64)
[src]Performs the *=
operation.
impl SubAssign<f64> for f64
[src]fn sub_assign(&mut self, other: f64)
[src]Performs the -=
operation.
impl<'a> SubAssign<&'a f64> for f64
[src]fn sub_assign(&mut self, other: &'a f64)
[src]Performs the -=
operation.
impl<'a> AddAssign<&'a f64> for f64
[src]fn add_assign(&mut self, other: &'a f64)
[src]Performs the +=
operation.
impl AddAssign<f64> for f64
[src]fn add_assign(&mut self, other: f64)
[src]Performs the +=
operation.
impl Neg for f64
[src]type Output = f64
The resulting type after applying the -
operator.
fn neg(self) -> f64
[src]Performs the unary -
operation.
impl<'a> Neg for &'a f64
[src]type Output = <f64 as Neg>::Output
The resulting type after applying the -
operator.
fn neg(self) -> <f64 as Neg>::Output
[src]Performs the unary -
operation.
impl Clone for f64
[src]fn clone(&self) -> f64
[src]Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
[src]Performs copy-assignment from source
. Read more
impl PartialOrd<f64> for f64
[src]fn partial_cmp(&self, other: &f64) -> Option<Ordering>
[src]This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, other: &f64) -> bool
[src]This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, other: &f64) -> bool
[src]This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn ge(&self, other: &f64) -> bool
[src]This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
fn gt(&self, other: &f64) -> bool
[src]This method tests greater than (for self
and other
) and is used by the >
operator. Read more
impl<'a, 'b> Sub<&'a f64> for &'b f64
[src]type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output
[src]Performs the -
operation.
impl<'a> Sub<&'a f64> for f64
[src]type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output
[src]Performs the -
operation.
impl Sub<f64> for f64
[src]type Output = f64
The resulting type after applying the -
operator.
fn sub(self, other: f64) -> f64
[src]Performs the -
operation.
impl<'a> Sub<f64> for &'a f64
[src]type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: f64) -> <f64 as Sub<f64>>::Output
[src]Performs the -
operation.
impl Sum<f64> for f64
[src]fn sum<I>(iter: I) -> f64 where
Â Â Â Â I: Iterator<Item = f64>,Â
[src]Method which takes an iterator and generates Self
from the elements by "summing up" the items. Read more
impl<'a> Sum<&'a f64> for f64
[src]fn sum<I>(iter: I) -> f64 where
Â Â Â Â I: Iterator<Item = &'a f64>,Â
[src]Method which takes an iterator and generates Self
from the elements by "summing up" the items. Read more
impl Debug for f64
[src]fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]Formats the value using the given formatter. Read more
impl PartialEq<f64> for f64
[src]fn eq(&self, other: &f64) -> bool
[src]This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &f64) -> bool
[src]This method tests for !=
.
impl From<f32> for f64
[src]Converts f32
to f64
losslessly.
impl From<i32> for f64
[src]Converts i32
to f64
losslessly.
impl From<u16> for f64
[src]Converts u16
to f64
losslessly.
impl From<u8> for f64
[src]Converts u8
to f64
losslessly.
impl From<u32> for f64
[src]Converts u32
to f64
losslessly.
impl From<i8> for f64
[src]Converts i8
to f64
losslessly.
impl From<i16> for f64
[src]Converts i16
to f64
losslessly.
impl Copy for f64
[src]impl<'a, 'b> Rem<&'a f64> for &'b f64
[src]type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output
[src]Performs the %
operation.
impl Rem<f64> for f64
[src]type Output = f64
The resulting type after applying the %
operator.
fn rem(self, other: f64) -> f64
[src]Performs the %
operation.
impl<'a> Rem<f64> for &'a f64
[src]type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: f64) -> <f64 as Rem<f64>>::Output
[src]Performs the %
operation.
impl<'a> Rem<&'a f64> for f64
[src]type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output
[src]Performs the %
operation.
impl UpperExp for f64
[src]fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]Formats the value using the given formatter.
impl<'a> Mul<&'a f64> for f64
[src]type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output
[src]Performs the *
operation.
impl Mul<f64> for f64
[src]type Output = f64
The resulting type after applying the *
operator.
fn mul(self, other: f64) -> f64
[src]Performs the *
operation.
impl<'a, 'b> Mul<&'a f64> for &'b f64
[src]type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output
[src]Performs the *
operation.
impl<'a> Mul<f64> for &'a f64
[src]type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: f64) -> <f64 as Mul<f64>>::Output
[src]Performs the *
operation.
impl Default for f64
[src]impl<'a> Div<&'a f64> for f64
[src]type Output = <f64 as Div<f64>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output
[src]Performs the /
operation.
impl<'a> Div<f64> for &'a f64
[src]type Output = <f64 as Div<f64>>::Output
The resulting type after applying the /
operator.
fn div(self, other: f64) -> <f64 as Div<f64>>::Output
[src]Performs the /
operation.
impl<'a, 'b> Div<&'a f64> for &'b f64
[src]type Output = <f64 as Div<f64>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output
[src]Performs the /
operation.
impl Div<f64> for f64
[src]type Output = f64
The resulting type after applying the /
operator.
fn div(self, other: f64) -> f64
[src]Performs the /
operation.
impl LowerExp for f64
[src]fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]Formats the value using the given formatter.
impl<'a, 'b> Add<&'a f64> for &'b f64
[src]type Output = <f64 as Add<f64>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output
[src]Performs the +
operation.
impl<'a> Add<f64> for &'a f64
[src]type Output = <f64 as Add<f64>>::Output
The resulting type after applying the +
operator.
fn add(self, other: f64) -> <f64 as Add<f64>>::Output
[src]Performs the +
operation.
impl<'a> Add<&'a f64> for f64
[src]type Output = <f64 as Add<f64>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output
[src]Performs the +
operation.
impl Add<f64> for f64
[src]type Output = f64
The resulting type after applying the +
operator.
fn add(self, other: f64) -> f64
[src]Performs the +
operation.
impl<'a> Product<&'a f64> for f64
[src]fn product<I>(iter: I) -> f64 where
Â Â Â Â I: Iterator<Item = &'a f64>,Â
[src]Method which takes an iterator and generates Self
from the elements by multiplying the items. Read more
impl Product<f64> for f64
[src]fn product<I>(iter: I) -> f64 where
Â Â Â Â I: Iterator<Item = f64>,Â
[src]Method which takes an iterator and generates Self
from the elements by multiplying the items. Read more
impl Display for f64
[src]fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]Formats the value using the given formatter. Read more
impl Float for f64
[src]type Int = u64
A uint of the same with as the float
type SignedInt = i64
A int of the same with as the float
const ZERO: f64
[src]const ONE: f64
[src]const BITS: u32
[src]The bitwidth of the float type
const SIGNIFICAND_BITS: u32
[src]The bitwidth of the significand
const SIGN_MASK: <f64 as Float>::Int
[src]A mask for the sign bit
const SIGNIFICAND_MASK: <f64 as Float>::Int
[src]A mask for the significand
const IMPLICIT_BIT: <f64 as Float>::Int
[src]const EXPONENT_MASK: <f64 as Float>::Int
[src]A mask for the exponent
fn repr(self) -> <f64 as Float>::Int
[src]Returns self
transmuted to Self::Int
fn signed_repr(self) -> <f64 as Float>::SignedInt
[src]Returns self
transmuted to Self::SignedInt
fn from_repr(a: <f64 as Float>::Int) -> f64
[src]Returns a Self::Int
transmuted back to Self
fn from_parts(
Â Â Â Â sign: bool,
Â Â Â Â exponent: <f64 as Float>::Int,
Â Â Â Â significand: <f64 as Float>::Int
) -> f64
[src]Constructs a Self
from its parts. Inputs are treated as bits and shifted into position.
fn normalize(significand: <f64 as Float>::Int) -> (i32, <f64 as Float>::Int)
[src]Returns (normalized exponent, normalized significand)
const EXPONENT_BITS: u32
[src]The bitwidth of the exponent
const EXPONENT_MAX: u32
[src]The maximum value of the exponent
const EXPONENT_BIAS: u32
[src]The exponent bias value
impl<T, U> TryFrom for T where
Â Â Â Â T: From<U>,Â
[src]type Error = !
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]Performs the conversion.
impl<T> From for T
[src]impl<T, U> TryInto for T where
Â Â Â Â U: TryFrom<T>,Â
[src]type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]Performs the conversion.
impl<T, U> Into for T where
Â Â Â Â U: From<T>,Â
[src]impl<T> Borrow for T where
Â Â Â Â T: ?Sized,Â
[src]fn borrow(&self) -> &T
[src]impl<'a, I> Iterator for &'a mut I where Â Â Â Â I: Iterator + ?Sized,Â type Item = <I as Iterator>::Item; impl<'a, R:Â Read + ?Sized> Read for &'a mut R impl<'a, W:Â Write + ?Sized> Write for &'a mut W
Immutably borrows from an owned value. Read more
impl<T> BorrowMut for T where
Â Â Â Â T: ?Sized,Â
[src]fn borrow_mut(&mut self) -> &mut T
[src]impl<'a, I> Iterator for &'a mut I where Â Â Â Â I: Iterator + ?Sized,Â type Item = <I as Iterator>::Item; impl<'a, R:Â Read + ?Sized> Read for &'a mut R impl<'a, W:Â Write + ?Sized> Write for &'a mut W
Mutably borrows from an owned value. Read more
impl<T> Any for T where
Â Â Â Â T: 'static + ?Sized,Â
[src]fn get_type_id(&self) -> TypeId
[src]Gets the TypeId
of self
. Read more
impl<T> ToOwned for T where
Â Â Â Â T: Clone,Â
[src]type Owned = T
fn to_owned(&self) -> T
[src]Creates owned data from borrowed data, usually by cloning. Read more
fn clone_into(&self, target: &mut T)
[src]Uses borrowed data to replace owned data, usually by cloning. Read more
impl<T> ToString for T where
Â Â Â Â T: Display + ?Sized,Â
[src]
Â© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/primitive.f64.html