The 8-bit unsigned integer type.

`impl u8`

[src]`pub const fn min_value() -> u8`

[src]Returns the smallest value that can be represented by this integer type.

Basic usage:

assert_eq!(u8::min_value(), 0);

`pub const fn max_value() -> u8`

[src]Returns the largest value that can be represented by this integer type.

Basic usage:

assert_eq!(u8::max_value(), 255);

`pub fn from_str_radix(src: &str, radix: u32) -> Result<u8, ParseIntError>`

[src]Converts a string slice in a given base to an integer.

The string is expected to be an optional `+`

sign followed by digits. Leading and trailing whitespace represent an error. Digits are a subset of these characters, depending on `radix`

:

`0-9`

`a-z`

`A-Z`

This function panics if `radix`

is not in the range from 2 to 36.

Basic usage:

assert_eq!(u8::from_str_radix("A", 16), Ok(10));

`pub const fn count_ones(self) -> u32`

[src]Returns the number of ones in the binary representation of `self`

.

Basic usage:

let n = 0b01001100u8; assert_eq!(n.count_ones(), 3);

`pub const fn count_zeros(self) -> u32`

[src]Returns the number of zeros in the binary representation of `self`

.

Basic usage:

assert_eq!(u8::max_value().count_zeros(), 0);

`pub const fn leading_zeros(self) -> u32`

[src]Returns the number of leading zeros in the binary representation of `self`

.

Basic usage:

let n = u8::max_value() >> 2; assert_eq!(n.leading_zeros(), 2);

`pub const fn trailing_zeros(self) -> u32`

[src]Returns the number of trailing zeros in the binary representation of `self`

.

Basic usage:

let n = 0b0101000u8; assert_eq!(n.trailing_zeros(), 3);

`pub const fn rotate_left(self, n: u32) -> u8`

[src]Shifts the bits to the left by a specified amount, `n`

, wrapping the truncated bits to the end of the resulting integer.

Please note this isn't the same operation as `<<`

!

Basic usage:

let n = 0x82u8; let m = 0xa; assert_eq!(n.rotate_left(2), m);

`pub const fn rotate_right(self, n: u32) -> u8`

[src]Shifts the bits to the right by a specified amount, `n`

, wrapping the truncated bits to the beginning of the resulting integer.

Please note this isn't the same operation as `>>`

!

Basic usage:

let n = 0xau8; let m = 0x82; assert_eq!(n.rotate_right(2), m);

`pub const fn swap_bytes(self) -> u8`

[src]Reverses the byte order of the integer.

Basic usage:

let n = 0x12u8; let m = n.swap_bytes(); assert_eq!(m, 0x12);

`pub const fn reverse_bits(self) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (reverse_bits #48763)

Reverses the bit pattern of the integer.

Basic usage:

#![feature(reverse_bits)] let n = 0x12u8; let m = n.reverse_bits(); assert_eq!(m, 0x48);

`pub const fn from_be(x: u8) -> u8`

[src]Converts an integer from big endian to the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Basic usage:

let n = 0x1Au8; if cfg!(target_endian = "big") { assert_eq!(u8::from_be(n), n) } else { assert_eq!(u8::from_be(n), n.swap_bytes()) }

`pub const fn from_le(x: u8) -> u8`

[src]Converts an integer from little endian to the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Basic usage:

let n = 0x1Au8; if cfg!(target_endian = "little") { assert_eq!(u8::from_le(n), n) } else { assert_eq!(u8::from_le(n), n.swap_bytes()) }

`pub const fn to_be(self) -> u8`

[src]Converts `self`

to big endian from the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Basic usage:

let n = 0x1Au8; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }

`pub const fn to_le(self) -> u8`

[src]Converts `self`

to little endian from the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Basic usage:

let n = 0x1Au8; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }

`pub fn checked_add(self, rhs: u8) -> Option<u8>`

[src]Checked integer addition. Computes `self + rhs`

, returning `None`

if overflow occurred.

Basic usage:

assert_eq!((u8::max_value() - 2).checked_add(1), Some(u8::max_value() - 1)); assert_eq!((u8::max_value() - 2).checked_add(3), None);

`pub fn checked_sub(self, rhs: u8) -> Option<u8>`

[src]Checked integer subtraction. Computes `self - rhs`

, returning `None`

if overflow occurred.

Basic usage:

assert_eq!(1u8.checked_sub(1), Some(0)); assert_eq!(0u8.checked_sub(1), None);

`pub fn checked_mul(self, rhs: u8) -> Option<u8>`

[src]Checked integer multiplication. Computes `self * rhs`

, returning `None`

if overflow occurred.

Basic usage:

assert_eq!(5u8.checked_mul(1), Some(5)); assert_eq!(u8::max_value().checked_mul(2), None);

`pub fn checked_div(self, rhs: u8) -> Option<u8>`

[src]Checked integer division. Computes `self / rhs`

, returning `None`

if `rhs == 0`

.

Basic usage:

assert_eq!(128u8.checked_div(2), Some(64)); assert_eq!(1u8.checked_div(0), None);

`pub fn checked_div_euc(self, rhs: u8) -> Option<u8>`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Checked Euclidean division. Computes `self.div_euc(rhs)`

, returning `None`

if `rhs == 0`

.

Basic usage:

#![feature(euclidean_division)] assert_eq!(128u8.checked_div(2), Some(64)); assert_eq!(1u8.checked_div_euc(0), None);

`pub fn checked_rem(self, rhs: u8) -> Option<u8>`

[src]1.7.0

Checked integer remainder. Computes `self % rhs`

, returning `None`

if `rhs == 0`

.

Basic usage:

assert_eq!(5u8.checked_rem(2), Some(1)); assert_eq!(5u8.checked_rem(0), None);

`pub fn checked_mod_euc(self, rhs: u8) -> Option<u8>`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Checked Euclidean modulo. Computes `self.mod_euc(rhs)`

, returning `None`

if `rhs == 0`

.

Basic usage:

#![feature(euclidean_division)] assert_eq!(5u8.checked_mod_euc(2), Some(1)); assert_eq!(5u8.checked_mod_euc(0), None);

`pub fn checked_neg(self) -> Option<u8>`

[src]1.7.0

Checked negation. Computes `-self`

, returning `None`

unless `self == 0`

.

Note that negating any positive integer will overflow.

Basic usage:

assert_eq!(0u8.checked_neg(), Some(0)); assert_eq!(1u8.checked_neg(), None);

`pub fn checked_shl(self, rhs: u32) -> Option<u8>`

[src]1.7.0

Checked shift left. Computes `self << rhs`

, returning `None`

if `rhs`

is larger than or equal to the number of bits in `self`

.

Basic usage:

assert_eq!(0x1u8.checked_shl(4), Some(0x10)); assert_eq!(0x10u8.checked_shl(129), None);

`pub fn checked_shr(self, rhs: u32) -> Option<u8>`

[src]1.7.0

Checked shift right. Computes `self >> rhs`

, returning `None`

if `rhs`

is larger than or equal to the number of bits in `self`

.

Basic usage:

assert_eq!(0x10u8.checked_shr(4), Some(0x1)); assert_eq!(0x10u8.checked_shr(129), None);

`pub fn checked_pow(self, exp: u32) -> Option<u8>`

[src]ðŸ”¬ This is a nightly-only experimental API. (no_panic_pow #48320)

Checked exponentiation. Computes `self.pow(exp)`

, returning `None`

if overflow occurred.

Basic usage:

#![feature(no_panic_pow)] assert_eq!(2u8.checked_pow(5), Some(32)); assert_eq!(u8::max_value().checked_pow(2), None);

`pub fn saturating_add(self, rhs: u8) -> u8`

[src]Saturating integer addition. Computes `self + rhs`

, saturating at the numeric bounds instead of overflowing.

Basic usage:

assert_eq!(100u8.saturating_add(1), 101); assert_eq!(200u8.saturating_add(127), 255);

`pub fn saturating_sub(self, rhs: u8) -> u8`

[src]Saturating integer subtraction. Computes `self - rhs`

, saturating at the numeric bounds instead of overflowing.

Basic usage:

assert_eq!(100u8.saturating_sub(27), 73); assert_eq!(13u8.saturating_sub(127), 0);

`pub fn saturating_mul(self, rhs: u8) -> u8`

[src]1.7.0

Saturating integer multiplication. Computes `self * rhs`

, saturating at the numeric bounds instead of overflowing.

Basic usage:

use std::u8; assert_eq!(2u8.saturating_mul(10), 20); assert_eq!((u8::MAX).saturating_mul(10), u8::MAX);

`pub fn saturating_pow(self, exp: u32) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (no_panic_pow #48320)

Saturating integer exponentiation. Computes `self.pow(exp)`

, saturating at the numeric bounds instead of overflowing.

Basic usage:

#![feature(no_panic_pow)] use std::u8; assert_eq!(4u8.saturating_pow(3), 64); assert_eq!(u8::MAX.saturating_pow(2), u8::MAX);

`pub const fn wrapping_add(self, rhs: u8) -> u8`

[src]Wrapping (modular) addition. Computes `self + rhs`

, wrapping around at the boundary of the type.

Basic usage:

assert_eq!(200u8.wrapping_add(55), 255); assert_eq!(200u8.wrapping_add(u8::max_value()), 199);

`pub const fn wrapping_sub(self, rhs: u8) -> u8`

[src]Wrapping (modular) subtraction. Computes `self - rhs`

, wrapping around at the boundary of the type.

Basic usage:

assert_eq!(100u8.wrapping_sub(100), 0); assert_eq!(100u8.wrapping_sub(u8::max_value()), 101);

`pub const fn wrapping_mul(self, rhs: u8) -> u8`

[src]Wrapping (modular) multiplication. Computes `self * rhs`

, wrapping around at the boundary of the type.

Basic usage:

Please note that this example is shared between integer types. Which explains why `u8`

is used here.

assert_eq!(10u8.wrapping_mul(12), 120); assert_eq!(25u8.wrapping_mul(12), 44);

`pub fn wrapping_div(self, rhs: u8) -> u8`

[src]1.2.0

Wrapping (modular) division. Computes `self / rhs`

. Wrapped division on unsigned types is just normal division. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Basic usage:

assert_eq!(100u8.wrapping_div(10), 10);

`pub fn wrapping_div_euc(self, rhs: u8) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Wrapping Euclidean division. Computes `self.div_euc(rhs)`

. Wrapped division on unsigned types is just normal division. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Basic usage:

#![feature(euclidean_division)] assert_eq!(100u8.wrapping_div_euc(10), 10);

`pub fn wrapping_rem(self, rhs: u8) -> u8`

[src]1.2.0

Wrapping (modular) remainder. Computes `self % rhs`

. Wrapped remainder calculation on unsigned types is just the regular remainder calculation. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Basic usage:

assert_eq!(100u8.wrapping_rem(10), 0);

`pub fn wrapping_mod_euc(self, rhs: u8) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Wrapping Euclidean modulo. Computes `self.mod_euc(rhs)`

. Wrapped modulo calculation on unsigned types is just the regular remainder calculation. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Basic usage:

#![feature(euclidean_division)] assert_eq!(100u8.wrapping_mod_euc(10), 0);

`pub fn wrapping_neg(self) -> u8`

[src]1.2.0

Wrapping (modular) negation. Computes `-self`

, wrapping around at the boundary of the type.

Since unsigned types do not have negative equivalents all applications of this function will wrap (except for `-0`

). For values smaller than the corresponding signed type's maximum the result is the same as casting the corresponding signed value. Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)`

where `MAX`

is the corresponding signed type's maximum.

Basic usage:

Please note that this example is shared between integer types. Which explains why `i8`

is used here.

assert_eq!(100i8.wrapping_neg(), -100); assert_eq!((-128i8).wrapping_neg(), -128);

`pub const fn wrapping_shl(self, rhs: u32) -> u8`

[src]1.2.0

Panic-free bitwise shift-left; yields `self << mask(rhs)`

, where `mask`

removes any high-order bits of `rhs`

that would cause the shift to exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a `rotate_left`

function, which may be what you want instead.

Basic usage:

assert_eq!(1u8.wrapping_shl(7), 128); assert_eq!(1u8.wrapping_shl(128), 1);

`pub const fn wrapping_shr(self, rhs: u32) -> u8`

[src]1.2.0

Panic-free bitwise shift-right; yields `self >> mask(rhs)`

, where `mask`

removes any high-order bits of `rhs`

that would cause the shift to exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a `rotate_right`

function, which may be what you want instead.

Basic usage:

assert_eq!(128u8.wrapping_shr(7), 1); assert_eq!(128u8.wrapping_shr(128), 128);

`pub fn wrapping_pow(self, exp: u32) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (no_panic_pow #48320)

Wrapping (modular) exponentiation. Computes `self.pow(exp)`

, wrapping around at the boundary of the type.

Basic usage:

#![feature(no_panic_pow)] assert_eq!(3u8.wrapping_pow(5), 243); assert_eq!(3u8.wrapping_pow(6), 217);

`pub const fn overflowing_add(self, rhs: u8) -> (u8, bool)`

[src]1.7.0

Calculates `self`

+ `rhs`

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Basic usage

use std::u8; assert_eq!(5u8.overflowing_add(2), (7, false)); assert_eq!(u8::MAX.overflowing_add(1), (0, true));

`pub const fn overflowing_sub(self, rhs: u8) -> (u8, bool)`

[src]1.7.0

Calculates `self`

- `rhs`

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Basic usage

use std::u8; assert_eq!(5u8.overflowing_sub(2), (3, false)); assert_eq!(0u8.overflowing_sub(1), (u8::MAX, true));

`pub const fn overflowing_mul(self, rhs: u8) -> (u8, bool)`

[src]1.7.0

Calculates the multiplication of `self`

and `rhs`

.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Basic usage:

Please note that this example is shared between integer types. Which explains why `u32`

is used here.

assert_eq!(5u32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));

`pub fn overflowing_div(self, rhs: u8) -> (u8, bool)`

[src]1.7.0

Calculates the divisor when `self`

is divided by `rhs`

.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always `false`

.

This function will panic if `rhs`

is 0.

Basic usage

assert_eq!(5u8.overflowing_div(2), (2, false));

`pub fn overflowing_div_euc(self, rhs: u8) -> (u8, bool)`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Calculates the quotient of Euclidean division `self.div_euc(rhs)`

.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always `false`

.

This function will panic if `rhs`

is 0.

Basic usage

#![feature(euclidean_division)] assert_eq!(5u8.overflowing_div_euc(2), (2, false));

`pub fn overflowing_rem(self, rhs: u8) -> (u8, bool)`

[src]1.7.0

Calculates the remainder when `self`

is divided by `rhs`

.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always `false`

.

This function will panic if `rhs`

is 0.

Basic usage

assert_eq!(5u8.overflowing_rem(2), (1, false));

`pub fn overflowing_mod_euc(self, rhs: u8) -> (u8, bool)`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Calculates the remainder `self.mod_euc(rhs)`

by Euclidean division.

Returns a tuple of the modulo after dividing along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always `false`

.

This function will panic if `rhs`

is 0.

Basic usage

#![feature(euclidean_division)] assert_eq!(5u8.overflowing_mod_euc(2), (1, false));

`pub fn overflowing_neg(self) -> (u8, bool)`

[src]1.7.0

Negates self in an overflowing fashion.

Returns `!self + 1`

using wrapping operations to return the value that represents the negation of this unsigned value. Note that for positive unsigned values overflow always occurs, but negating 0 does not overflow.

Basic usage

assert_eq!(0u8.overflowing_neg(), (0, false)); assert_eq!(2u8.overflowing_neg(), (-2i32 as u8, true));

`pub const fn overflowing_shl(self, rhs: u32) -> (u8, bool)`

[src]1.7.0

Shifts self left by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Basic usage

assert_eq!(0x1u8.overflowing_shl(4), (0x10, false)); assert_eq!(0x1u8.overflowing_shl(132), (0x10, true));

`pub const fn overflowing_shr(self, rhs: u32) -> (u8, bool)`

[src]1.7.0

Shifts self right by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Basic usage

assert_eq!(0x10u8.overflowing_shr(4), (0x1, false)); assert_eq!(0x10u8.overflowing_shr(132), (0x1, true));

`pub fn overflowing_pow(self, exp: u32) -> (u8, bool)`

[src]ðŸ”¬ This is a nightly-only experimental API. (no_panic_pow #48320)

Raises self to the power of `exp`

, using exponentiation by squaring.

Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.

Basic usage:

#![feature(no_panic_pow)] assert_eq!(3u8.overflowing_pow(5), (243, false)); assert_eq!(3u8.overflowing_pow(6), (217, true));

`pub fn pow(self, exp: u32) -> u8`

[src]Raises self to the power of `exp`

, using exponentiation by squaring.

Basic usage:

assert_eq!(2u8.pow(5), 32);

`pub fn div_euc(self, rhs: u8) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Performs Euclidean division.

For unsigned types, this is just the same as `self / rhs`

.

Basic usage:

#![feature(euclidean_division)] assert_eq!(7u8.div_euc(4), 1); // or any other integer type

`pub fn mod_euc(self, rhs: u8) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Calculates the remainder `self mod rhs`

by Euclidean division.

For unsigned types, this is just the same as `self % rhs`

.

Basic usage:

#![feature(euclidean_division)] assert_eq!(7u8.mod_euc(4), 3); // or any other integer type

`pub fn is_power_of_two(self) -> bool`

[src]Returns `true`

if and only if `self == 2^k`

for some `k`

.

Basic usage:

assert!(16u8.is_power_of_two()); assert!(!10u8.is_power_of_two());

`pub fn next_power_of_two(self) -> u8`

[src]Returns the smallest power of two greater than or equal to `self`

.

When return value overflows (i.e. `self > (1 << (N-1))`

for type `uN`

), it panics in debug mode and return value is wrapped to 0 in release mode (the only situation in which method can return 0).

Basic usage:

assert_eq!(2u8.next_power_of_two(), 2); assert_eq!(3u8.next_power_of_two(), 4);

`pub fn checked_next_power_of_two(self) -> Option<u8>`

[src]Returns the smallest power of two greater than or equal to `n`

. If the next power of two is greater than the type's maximum value, `None`

is returned, otherwise the power of two is wrapped in `Some`

.

Basic usage:

assert_eq!(2u8.checked_next_power_of_two(), Some(2)); assert_eq!(3u8.checked_next_power_of_two(), Some(4)); assert_eq!(u8::max_value().checked_next_power_of_two(), None);

`pub fn wrapping_next_power_of_two(self) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (wrapping_next_power_of_two #32463)needs decision on wrapping behaviour

Returns the smallest power of two greater than or equal to `n`

. If the next power of two is greater than the type's maximum value, the return value is wrapped to `0`

.

Basic usage:

#![feature(wrapping_next_power_of_two)] assert_eq!(2u8.wrapping_next_power_of_two(), 2); assert_eq!(3u8.wrapping_next_power_of_two(), 4); assert_eq!(u8::max_value().wrapping_next_power_of_two(), 0);

`pub const fn to_be_bytes(self) -> [u8; 1]`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Return the memory representation of this integer as a byte array in big-endian (network) byte order.

#![feature(int_to_from_bytes)] let bytes = 0x12u8.to_be_bytes(); assert_eq!(bytes, [0x12]);

`pub const fn to_le_bytes(self) -> [u8; 1]`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Return the memory representation of this integer as a byte array in little-endian byte order.

#![feature(int_to_from_bytes)] let bytes = 0x12u8.to_le_bytes(); assert_eq!(bytes, [0x12]);

`pub const fn to_ne_bytes(self) -> [u8; 1]`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Return the memory representation of this integer as a byte array in native byte order.

As the target platform's native endianness is used, portable code should use `to_be_bytes`

or `to_le_bytes`

, as appropriate, instead.

#![feature(int_to_from_bytes)] let bytes = 0x12u8.to_ne_bytes(); assert_eq!(bytes, if cfg!(target_endian = "big") { [0x12] } else { [0x12] });

`pub const fn from_be_bytes(bytes: [u8; 1]) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Create an integer value from its representation as a byte array in big endian.

#![feature(int_to_from_bytes)] let value = u8::from_be_bytes([0x12]); assert_eq!(value, 0x12);

`pub const fn from_le_bytes(bytes: [u8; 1]) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Create an integer value from its representation as a byte array in little endian.

#![feature(int_to_from_bytes)] let value = u8::from_le_bytes([0x12]); assert_eq!(value, 0x12);

`pub const fn from_ne_bytes(bytes: [u8; 1]) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Create an integer value from its memory representation as a byte array in native endianness.

As the target platform's native endianness is used, portable code likely wants to use `from_be_bytes`

or `from_le_bytes`

, as appropriate instead.

#![feature(int_to_from_bytes)] let value = u8::from_ne_bytes(if cfg!(target_endian = "big") { [0x12] } else { [0x12] }); assert_eq!(value, 0x12);

`pub fn is_ascii(&self) -> bool`

[src]1.23.0

Checks if the value is within the ASCII range.

let ascii = 97u8; let non_ascii = 150u8; assert!(ascii.is_ascii()); assert!(!non_ascii.is_ascii());

`pub fn to_ascii_uppercase(&self) -> u8`

[src]1.23.0

Makes a copy of the value in its ASCII upper case equivalent.

ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.

To uppercase the value in-place, use `make_ascii_uppercase`

.

let lowercase_a = 97u8; assert_eq!(65, lowercase_a.to_ascii_uppercase());

`pub fn to_ascii_lowercase(&self) -> u8`

[src]1.23.0

Makes a copy of the value in its ASCII lower case equivalent.

ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.

To lowercase the value in-place, use `make_ascii_lowercase`

.

let uppercase_a = 65u8; assert_eq!(97, uppercase_a.to_ascii_lowercase());

`pub fn eq_ignore_ascii_case(&self, other: &u8) -> bool`

[src]1.23.0

Checks that two values are an ASCII case-insensitive match.

This is equivalent to `to_ascii_lowercase(a) == to_ascii_lowercase(b)`

.

let lowercase_a = 97u8; let uppercase_a = 65u8; assert!(lowercase_a.eq_ignore_ascii_case(&uppercase_a));

`pub fn make_ascii_uppercase(&mut self)`

[src]1.23.0

Converts this value to its ASCII upper case equivalent in-place.

ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.

To return a new uppercased value without modifying the existing one, use `to_ascii_uppercase`

.

let mut byte = b'a'; byte.make_ascii_uppercase(); assert_eq!(b'A', byte);

`pub fn make_ascii_lowercase(&mut self)`

[src]1.23.0

Converts this value to its ASCII lower case equivalent in-place.

ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.

To return a new lowercased value without modifying the existing one, use `to_ascii_lowercase`

.

let mut byte = b'A'; byte.make_ascii_lowercase(); assert_eq!(b'a', byte);

`pub fn is_ascii_alphabetic(&self) -> bool`

[src]1.24.0

Checks if the value is an ASCII alphabetic character:

- U+0041 'A' ... U+005A 'Z', or
- U+0061 'a' ... U+007A 'z'.

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(uppercase_a.is_ascii_alphabetic()); assert!(uppercase_g.is_ascii_alphabetic()); assert!(a.is_ascii_alphabetic()); assert!(g.is_ascii_alphabetic()); assert!(!zero.is_ascii_alphabetic()); assert!(!percent.is_ascii_alphabetic()); assert!(!space.is_ascii_alphabetic()); assert!(!lf.is_ascii_alphabetic()); assert!(!esc.is_ascii_alphabetic());

`pub fn is_ascii_uppercase(&self) -> bool`

[src]1.24.0

Checks if the value is an ASCII uppercase character: U+0041 'A' ... U+005A 'Z'.

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(uppercase_a.is_ascii_uppercase()); assert!(uppercase_g.is_ascii_uppercase()); assert!(!a.is_ascii_uppercase()); assert!(!g.is_ascii_uppercase()); assert!(!zero.is_ascii_uppercase()); assert!(!percent.is_ascii_uppercase()); assert!(!space.is_ascii_uppercase()); assert!(!lf.is_ascii_uppercase()); assert!(!esc.is_ascii_uppercase());

`pub fn is_ascii_lowercase(&self) -> bool`

[src]1.24.0

Checks if the value is an ASCII lowercase character: U+0061 'a' ... U+007A 'z'.

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(!uppercase_a.is_ascii_lowercase()); assert!(!uppercase_g.is_ascii_lowercase()); assert!(a.is_ascii_lowercase()); assert!(g.is_ascii_lowercase()); assert!(!zero.is_ascii_lowercase()); assert!(!percent.is_ascii_lowercase()); assert!(!space.is_ascii_lowercase()); assert!(!lf.is_ascii_lowercase()); assert!(!esc.is_ascii_lowercase());

`pub fn is_ascii_alphanumeric(&self) -> bool`

[src]1.24.0

Checks if the value is an ASCII alphanumeric character:

- U+0041 'A' ... U+005A 'Z', or
- U+0061 'a' ... U+007A 'z', or
- U+0030 '0' ... U+0039 '9'.

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(uppercase_a.is_ascii_alphanumeric()); assert!(uppercase_g.is_ascii_alphanumeric()); assert!(a.is_ascii_alphanumeric()); assert!(g.is_ascii_alphanumeric()); assert!(zero.is_ascii_alphanumeric()); assert!(!percent.is_ascii_alphanumeric()); assert!(!space.is_ascii_alphanumeric()); assert!(!lf.is_ascii_alphanumeric()); assert!(!esc.is_ascii_alphanumeric());

`pub fn is_ascii_digit(&self) -> bool`

[src]1.24.0

Checks if the value is an ASCII decimal digit: U+0030 '0' ... U+0039 '9'.

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(!uppercase_a.is_ascii_digit()); assert!(!uppercase_g.is_ascii_digit()); assert!(!a.is_ascii_digit()); assert!(!g.is_ascii_digit()); assert!(zero.is_ascii_digit()); assert!(!percent.is_ascii_digit()); assert!(!space.is_ascii_digit()); assert!(!lf.is_ascii_digit()); assert!(!esc.is_ascii_digit());

`pub fn is_ascii_hexdigit(&self) -> bool`

[src]1.24.0

Checks if the value is an ASCII hexadecimal digit:

- U+0030 '0' ... U+0039 '9', or
- U+0041 'A' ... U+0046 'F', or
- U+0061 'a' ... U+0066 'f'.

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(uppercase_a.is_ascii_hexdigit()); assert!(!uppercase_g.is_ascii_hexdigit()); assert!(a.is_ascii_hexdigit()); assert!(!g.is_ascii_hexdigit()); assert!(zero.is_ascii_hexdigit()); assert!(!percent.is_ascii_hexdigit()); assert!(!space.is_ascii_hexdigit()); assert!(!lf.is_ascii_hexdigit()); assert!(!esc.is_ascii_hexdigit());

`pub fn is_ascii_punctuation(&self) -> bool`

[src]1.24.0

Checks if the value is an ASCII punctuation character:

- U+0021 ... U+002F
`! " # $ % & ' ( ) * + , - . /`

, or - U+003A ... U+0040
`: ; < = > ? @`

, or - U+005B ... U+0060
`[ \ ] ^ _ ``

, or - U+007B ... U+007E
`{ | } ~`

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(!uppercase_a.is_ascii_punctuation()); assert!(!uppercase_g.is_ascii_punctuation()); assert!(!a.is_ascii_punctuation()); assert!(!g.is_ascii_punctuation()); assert!(!zero.is_ascii_punctuation()); assert!(percent.is_ascii_punctuation()); assert!(!space.is_ascii_punctuation()); assert!(!lf.is_ascii_punctuation()); assert!(!esc.is_ascii_punctuation());

`pub fn is_ascii_graphic(&self) -> bool`

[src]1.24.0

Checks if the value is an ASCII graphic character: U+0021 '!' ... U+007E '~'.

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(uppercase_a.is_ascii_graphic()); assert!(uppercase_g.is_ascii_graphic()); assert!(a.is_ascii_graphic()); assert!(g.is_ascii_graphic()); assert!(zero.is_ascii_graphic()); assert!(percent.is_ascii_graphic()); assert!(!space.is_ascii_graphic()); assert!(!lf.is_ascii_graphic()); assert!(!esc.is_ascii_graphic());

`pub fn is_ascii_whitespace(&self) -> bool`

[src]1.24.0

Checks if the value is an ASCII whitespace character: U+0020 SPACE, U+0009 HORIZONTAL TAB, U+000A LINE FEED, U+000C FORM FEED, or U+000D CARRIAGE RETURN.

Rust uses the WhatWG Infra Standard's definition of ASCII whitespace. There are several other definitions in wide use. For instance, the POSIX locale includes U+000B VERTICAL TAB as well as all the above characters, butâ€”from the very same specificationâ€”the default rule for "field splitting" in the Bourne shell considers *only* SPACE, HORIZONTAL TAB, and LINE FEED as whitespace.

If you are writing a program that will process an existing file format, check what that format's definition of whitespace is before using this function.

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(!uppercase_a.is_ascii_whitespace()); assert!(!uppercase_g.is_ascii_whitespace()); assert!(!a.is_ascii_whitespace()); assert!(!g.is_ascii_whitespace()); assert!(!zero.is_ascii_whitespace()); assert!(!percent.is_ascii_whitespace()); assert!(space.is_ascii_whitespace()); assert!(lf.is_ascii_whitespace()); assert!(!esc.is_ascii_whitespace());

`pub fn is_ascii_control(&self) -> bool`

[src]1.24.0

Checks if the value is an ASCII control character: U+0000 NUL ... U+001F UNIT SEPARATOR, or U+007F DELETE. Note that most ASCII whitespace characters are control characters, but SPACE is not.

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(!uppercase_a.is_ascii_control()); assert!(!uppercase_g.is_ascii_control()); assert!(!a.is_ascii_control()); assert!(!g.is_ascii_control()); assert!(!zero.is_ascii_control()); assert!(!percent.is_ascii_control()); assert!(!space.is_ascii_control()); assert!(lf.is_ascii_control()); assert!(esc.is_ascii_control());

`impl TryFrom<usize> for u8`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: usize) -> Result<u8, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<i64> for u8`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: i64) -> Result<u8, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<i32> for u8`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: i32) -> Result<u8, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<u128> for u8`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: u128) -> Result<u8, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<i8> for u8`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: i8) -> Result<u8, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<u32> for u8`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: u32) -> Result<u8, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<u16> for u8`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: u16) -> Result<u8, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<u64> for u8`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: u64) -> Result<u8, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<i16> for u8`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: i16) -> Result<u8, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<i128> for u8`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: i128) -> Result<u8, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<isize> for u8`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: isize) -> Result<u8, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl FromStr for u8`

[src]`type Err = ParseIntError`

The associated error which can be returned from parsing.

`fn from_str(src: &str) -> Result<u8, ParseIntError>`

[src]Parses a string `s`

to return a value of this type. Read more

`impl<'a> RemAssign<&'a u8> for u8`

[src]1.22.0

`fn rem_assign(&mut self, other: &'a u8)`

[src]Performs the `%=`

operation.

`impl RemAssign<u8> for u8`

[src]1.8.0

`fn rem_assign(&mut self, other: u8)`

[src]Performs the `%=`

operation.

`impl DivAssign<u8> for u8`

[src]1.8.0

`fn div_assign(&mut self, other: u8)`

[src]Performs the `/=`

operation.

`impl<'a> DivAssign<&'a u8> for u8`

[src]1.22.0

`fn div_assign(&mut self, other: &'a u8)`

[src]Performs the `/=`

operation.

`impl MulAssign<u8> for u8`

[src]1.8.0

`fn mul_assign(&mut self, other: u8)`

[src]Performs the `*=`

operation.

`impl<'a> MulAssign<&'a u8> for u8`

[src]1.22.0

`fn mul_assign(&mut self, other: &'a u8)`

[src]Performs the `*=`

operation.

`impl SubAssign<u8> for u8`

[src]1.8.0

`fn sub_assign(&mut self, other: u8)`

[src]Performs the `-=`

operation.

`impl<'a> SubAssign<&'a u8> for u8`

[src]1.22.0

`fn sub_assign(&mut self, other: &'a u8)`

[src]Performs the `-=`

operation.

`impl Hash for u8`

[src]`fn hash<H>(&self, state: &mut H) where`

Â Â Â Â H: Hasher,Â

[src]Feeds this value into the given [`Hasher`

]. Read more

`fn hash_slice<H>(data: &[u8], state: &mut H) where`

Â Â Â Â H: Hasher,Â

[src]Feeds a slice of this type into the given [`Hasher`

]. Read more

`impl<'a> AddAssign<&'a u8> for u8`

[src]1.22.0

`fn add_assign(&mut self, other: &'a u8)`

[src]Performs the `+=`

operation.

`impl AddAssign<u8> for u8`

[src]1.8.0

`fn add_assign(&mut self, other: u8)`

[src]Performs the `+=`

operation.

`impl<'a> ShrAssign<&'a u32> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a u32)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<i32> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: i32)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<u64> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: u64)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<i128> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: i128)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<i64> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: i64)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a u128> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a u128)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a i32> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a i32)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<u128> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: u128)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a usize> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a usize)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a i128> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a i128)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<u8> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: u8)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a u16> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a u16)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a i8> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a i8)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<u16> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: u16)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<i8> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: i8)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a u8> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a u8)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a isize> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a isize)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<u32> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: u32)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a i64> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a i64)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a i16> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a i16)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<isize> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: isize)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a u64> for u8`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a u64)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<i16> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: i16)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<usize> for u8`

[src]1.8.0

`fn shr_assign(&mut self, other: usize)`

[src]Performs the `>>=`

operation.

`impl Clone for u8`

[src]`fn clone(&self) -> u8`

[src]Returns a copy of the value. Read more

`fn clone_from(&mut self, source: &Self)`

[src]Performs copy-assignment from `source`

. Read more

`impl PartialOrd<u8> for u8`

[src]`fn partial_cmp(&self, other: &u8) -> Option<Ordering>`

[src]This method returns an ordering between `self`

and `other`

values if one exists. Read more

`fn lt(&self, other: &u8) -> bool`

[src]This method tests less than (for `self`

and `other`

) and is used by the `<`

operator. Read more

`fn le(&self, other: &u8) -> bool`

[src]This method tests less than or equal to (for `self`

and `other`

) and is used by the `<=`

operator. Read more

`fn ge(&self, other: &u8) -> bool`

[src]This method tests greater than or equal to (for `self`

and `other`

) and is used by the `>=`

operator. Read more

`fn gt(&self, other: &u8) -> bool`

[src]This method tests greater than (for `self`

and `other`

) and is used by the `>`

operator. Read more

`impl Ord for u8`

[src]`fn cmp(&self, other: &u8) -> Ordering`

[src]This method returns an `Ordering`

between `self`

and `other`

. Read more

`fn max(self, other: Self) -> Self`

[src]1.21.0

Compares and returns the maximum of two values. Read more

`fn min(self, other: Self) -> Self`

[src]1.21.0

Compares and returns the minimum of two values. Read more

`impl Sub<u8> for u8`

[src]`type Output = u8`

The resulting type after applying the `-`

operator.

`fn sub(self, other: u8) -> u8`

[src]Performs the `-`

operation.

`impl<'a, 'b> Sub<&'a u8> for &'b u8`

[src]`type Output = <u8 as Sub<u8>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: &'a u8) -> <u8 as Sub<u8>>::Output`

[src]Performs the `-`

operation.

`impl<'a> Sub<u8> for &'a u8`

[src]`type Output = <u8 as Sub<u8>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: u8) -> <u8 as Sub<u8>>::Output`

[src]Performs the `-`

operation.

`impl<'a> Sub<&'a u8> for u8`

[src]`type Output = <u8 as Sub<u8>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: &'a u8) -> <u8 as Sub<u8>>::Output`

[src]Performs the `-`

operation.

`impl<'a> Shr<&'a i64> for u8`

[src]`type Output = <u8 as Shr<i64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i64) -> <u8 as Shr<i64>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a u32> for u8`

[src]`type Output = <u8 as Shr<u32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u32) -> <u8 as Shr<u32>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<i32> for &'a u8`

[src]`type Output = <u8 as Shr<i32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i32) -> <u8 as Shr<i32>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<u32> for &'a u8`

[src]`type Output = <u8 as Shr<u32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u32) -> <u8 as Shr<u32>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a usize> for &'b u8`

[src]`type Output = <u8 as Shr<usize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a usize) -> <u8 as Shr<usize>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<i8> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i8) -> u8`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a i64> for &'b u8`

[src]`type Output = <u8 as Shr<i64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i64) -> <u8 as Shr<i64>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a i32> for &'b u8`

[src]`type Output = <u8 as Shr<i32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i32) -> <u8 as Shr<i32>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<isize> for &'a u8`

[src]`type Output = <u8 as Shr<isize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: isize) -> <u8 as Shr<isize>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<u128> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u128) -> u8`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a i8> for &'b u8`

[src]`type Output = <u8 as Shr<i8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i8) -> <u8 as Shr<i8>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<usize> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: usize) -> u8`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a isize> for &'b u8`

[src]`type Output = <u8 as Shr<isize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a isize) -> <u8 as Shr<isize>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<u16> for &'a u8`

[src]`type Output = <u8 as Shr<u16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u16) -> <u8 as Shr<u16>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<u32> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u32) -> u8`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a u16> for &'b u8`

[src]`type Output = <u8 as Shr<u16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u16) -> <u8 as Shr<u16>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a i128> for &'b u8`

[src]`type Output = <u8 as Shr<i128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i128) -> <u8 as Shr<i128>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<u8> for &'a u8`

[src]`type Output = <u8 as Shr<u8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u8) -> <u8 as Shr<u8>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<i64> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i64) -> u8`

[src]Performs the `>>`

operation.

`impl Shr<isize> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: isize) -> u8`

[src]Performs the `>>`

operation.

`impl<'a> Shr<i8> for &'a u8`

[src]`type Output = <u8 as Shr<i8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i8) -> <u8 as Shr<i8>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a u32> for &'b u8`

[src]`type Output = <u8 as Shr<u32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u32) -> <u8 as Shr<u32>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a i16> for u8`

[src]`type Output = <u8 as Shr<i16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i16) -> <u8 as Shr<i16>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a i32> for u8`

[src]`type Output = <u8 as Shr<i32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i32) -> <u8 as Shr<i32>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a u64> for u8`

[src]`type Output = <u8 as Shr<u64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u64) -> <u8 as Shr<u64>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<u128> for &'a u8`

[src]`type Output = <u8 as Shr<u128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u128) -> <u8 as Shr<u128>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a i8> for u8`

[src]`type Output = <u8 as Shr<i8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i8) -> <u8 as Shr<i8>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<u64> for &'a u8`

[src]`type Output = <u8 as Shr<u64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u64) -> <u8 as Shr<u64>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<i128> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i128) -> u8`

[src]Performs the `>>`

operation.

`impl Shr<i32> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i32) -> u8`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a u64> for &'b u8`

[src]`type Output = <u8 as Shr<u64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u64) -> <u8 as Shr<u64>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<u8> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u8) -> u8`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a usize> for u8`

[src]`type Output = <u8 as Shr<usize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a usize) -> <u8 as Shr<usize>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<i128> for &'a u8`

[src]`type Output = <u8 as Shr<i128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i128) -> <u8 as Shr<i128>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a u128> for &'b u8`

[src]`type Output = <u8 as Shr<u128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u128) -> <u8 as Shr<u128>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<u64> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u64) -> u8`

[src]Performs the `>>`

operation.

`impl<'a> Shr<usize> for &'a u8`

[src]`type Output = <u8 as Shr<usize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: usize) -> <u8 as Shr<usize>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a u16> for u8`

[src]`type Output = <u8 as Shr<u16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u16) -> <u8 as Shr<u16>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a i128> for u8`

[src]`type Output = <u8 as Shr<i128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i128) -> <u8 as Shr<i128>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a u8> for &'b u8`

[src]`type Output = <u8 as Shr<u8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u8) -> <u8 as Shr<u8>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a i16> for &'b u8`

[src]`type Output = <u8 as Shr<i16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i16) -> <u8 as Shr<i16>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a isize> for u8`

[src]`type Output = <u8 as Shr<isize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a isize) -> <u8 as Shr<isize>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a u8> for u8`

[src]`type Output = <u8 as Shr<u8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u8) -> <u8 as Shr<u8>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<u16> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u16) -> u8`

[src]Performs the `>>`

operation.

`impl<'a> Shr<i16> for &'a u8`

[src]`type Output = <u8 as Shr<i16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i16) -> <u8 as Shr<i16>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<i64> for &'a u8`

[src]`type Output = <u8 as Shr<i64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i64) -> <u8 as Shr<i64>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a u128> for u8`

[src]`type Output = <u8 as Shr<u128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u128) -> <u8 as Shr<u128>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<i16> for u8`

[src]`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i16) -> u8`

[src]Performs the `>>`

operation.

`impl Binary for u8`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter.

`impl<'a> Sum<&'a u8> for u8`

[src]1.12.0

`fn sum<I>(iter: I) -> u8 where`

Â Â Â Â I: Iterator<Item = &'a u8>,Â

[src]Method which takes an iterator and generates `Self`

from the elements by "summing up" the items. Read more

`impl Sum<u8> for u8`

[src]1.12.0

`fn sum<I>(iter: I) -> u8 where`

Â Â Â Â I: Iterator<Item = u8>,Â

[src]`Self`

from the elements by "summing up" the items. Read more

`impl<'a> BitXor<&'a u8> for u8`

[src]`type Output = <u8 as BitXor<u8>>::Output`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: &'a u8) -> <u8 as BitXor<u8>>::Output`

[src]Performs the `^`

operation.

`impl BitXor<u8> for u8`

[src]`type Output = u8`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: u8) -> u8`

[src]Performs the `^`

operation.

`impl<'a, 'b> BitXor<&'a u8> for &'b u8`

[src]`type Output = <u8 as BitXor<u8>>::Output`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: &'a u8) -> <u8 as BitXor<u8>>::Output`

[src]Performs the `^`

operation.

`impl<'a> BitXor<u8> for &'a u8`

[src]`type Output = <u8 as BitXor<u8>>::Output`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: u8) -> <u8 as BitXor<u8>>::Output`

[src]Performs the `^`

operation.

`impl Step for u8`

[src]`fn steps_between(start: &u8, end: &u8) -> Option<usize>`

[src]ðŸ”¬ This is a nightly-only experimental API. (step_trait #42168)likely to be replaced by finer-grained traits

Returns the number of steps between two step objects. The count is inclusive of `start`

and exclusive of `end`

. Read more

`fn add_usize(&self, n: usize) -> Option<u8>`

[src]ðŸ”¬ This is a nightly-only experimental API. (step_trait #42168)likely to be replaced by finer-grained traits

Add an usize, returning None on overflow

`fn replace_one(&mut self) -> u8`

[src]ðŸ”¬ This is a nightly-only experimental API. (step_trait #42168)likely to be replaced by finer-grained traits

Replaces this step with `1`

, returning itself

`fn replace_zero(&mut self) -> u8`

[src]Replaces this step with `0`

, returning itself

`fn add_one(&self) -> u8`

[src]Adds one to this step, returning the result

`fn sub_one(&self) -> u8`

[src]Subtracts one to this step, returning the result

`impl Debug for u8`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter. Read more

`impl Eq for u8`

[src]`impl PartialEq<u8> for u8`

[src]`fn eq(&self, other: &u8) -> bool`

[src]This method tests for `self`

and `other`

values to be equal, and is used by `==`

. Read more

`fn ne(&self, other: &u8) -> bool`

[src]This method tests for `!=`

.

`impl<'a> Not for &'a u8`

[src]`type Output = <u8 as Not>::Output`

The resulting type after applying the `!`

operator.

`fn not(self) -> <u8 as Not>::Output`

[src]Performs the unary `!`

operation.

`impl Not for u8`

[src]`type Output = u8`

The resulting type after applying the `!`

operator.

`fn not(self) -> u8`

[src]Performs the unary `!`

operation.

`impl From<bool> for u8`

[src]1.28.0

Converts a `bool`

to a `u8`

. The resulting value is `0`

for `false`

and `1`

for `true`

values.

assert_eq!(u8::from(true), 1); assert_eq!(u8::from(false), 0);

`impl Copy for u8`

[src]`impl Rem<u8> for u8`

[src]This operation satisfies `n % d == n - (n / d) * d`

. The result has the same sign as the left operand.

`type Output = u8`

The resulting type after applying the `%`

operator.

`fn rem(self, other: u8) -> u8`

[src]Performs the `%`

operation.

`impl<'a> Rem<&'a u8> for u8`

[src]`type Output = <u8 as Rem<u8>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: &'a u8) -> <u8 as Rem<u8>>::Output`

[src]Performs the `%`

operation.

`impl<'a, 'b> Rem<&'a u8> for &'b u8`

[src]`type Output = <u8 as Rem<u8>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: &'a u8) -> <u8 as Rem<u8>>::Output`

[src]Performs the `%`

operation.

`impl<'a> Rem<u8> for &'a u8`

[src]`type Output = <u8 as Rem<u8>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: u8) -> <u8 as Rem<u8>>::Output`

[src]Performs the `%`

operation.

`impl<'a> Mul<&'a u8> for u8`

[src]`type Output = <u8 as Mul<u8>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: &'a u8) -> <u8 as Mul<u8>>::Output`

[src]Performs the `*`

operation.

`impl<'a, 'b> Mul<&'a u8> for &'b u8`

[src]`type Output = <u8 as Mul<u8>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: &'a u8) -> <u8 as Mul<u8>>::Output`

[src]Performs the `*`

operation.

`impl<'a> Mul<u8> for &'a u8`

[src]`type Output = <u8 as Mul<u8>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: u8) -> <u8 as Mul<u8>>::Output`

[src]Performs the `*`

operation.

`impl Mul<u8> for u8`

[src]`type Output = u8`

The resulting type after applying the `*`

operator.

`fn mul(self, other: u8) -> u8`

[src]Performs the `*`

operation.

`impl UpperHex for u8`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter.

`impl Octal for u8`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter.

`impl Shl<u128> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u128) -> u8`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a u128> for u8`

[src]`type Output = <u8 as Shl<u128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u128) -> <u8 as Shl<u128>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<u32> for &'a u8`

[src]`type Output = <u8 as Shl<u32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u32) -> <u8 as Shl<u32>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<u128> for &'a u8`

[src]`type Output = <u8 as Shl<u128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u128) -> <u8 as Shl<u128>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<i128> for &'a u8`

[src]`type Output = <u8 as Shl<i128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i128) -> <u8 as Shl<i128>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a i32> for &'b u8`

[src]`type Output = <u8 as Shl<i32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i32) -> <u8 as Shl<i32>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<u64> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u64) -> u8`

[src]Performs the `<<`

operation.

`impl Shl<u32> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u32) -> u8`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a u16> for u8`

[src]`type Output = <u8 as Shl<u16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u16) -> <u8 as Shl<u16>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a u16> for &'b u8`

[src]`type Output = <u8 as Shl<u16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u16) -> <u8 as Shl<u16>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<usize> for &'a u8`

[src]`type Output = <u8 as Shl<usize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: usize) -> <u8 as Shl<usize>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a i128> for u8`

[src]`type Output = <u8 as Shl<i128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i128) -> <u8 as Shl<i128>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<i16> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i16) -> u8`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a isize> for u8`

[src]`type Output = <u8 as Shl<isize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a isize) -> <u8 as Shl<isize>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<u64> for &'a u8`

[src]`type Output = <u8 as Shl<u64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u64) -> <u8 as Shl<u64>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a i8> for u8`

[src]`type Output = <u8 as Shl<i8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i8) -> <u8 as Shl<i8>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a i8> for &'b u8`

[src]`type Output = <u8 as Shl<i8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i8) -> <u8 as Shl<i8>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<u8> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u8) -> u8`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a u128> for &'b u8`

[src]`type Output = <u8 as Shl<u128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u128) -> <u8 as Shl<u128>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a i64> for &'b u8`

[src]`type Output = <u8 as Shl<i64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i64) -> <u8 as Shl<i64>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<isize> for &'a u8`

[src]`type Output = <u8 as Shl<isize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: isize) -> <u8 as Shl<isize>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a u32> for u8`

[src]`type Output = <u8 as Shl<u32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u32) -> <u8 as Shl<u32>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<i128> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i128) -> u8`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a isize> for &'b u8`

[src]`type Output = <u8 as Shl<isize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a isize) -> <u8 as Shl<isize>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<i32> for &'a u8`

[src]`type Output = <u8 as Shl<i32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i32) -> <u8 as Shl<i32>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a i32> for u8`

[src]`type Output = <u8 as Shl<i32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i32) -> <u8 as Shl<i32>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a u8> for &'b u8`

[src]`type Output = <u8 as Shl<u8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u8) -> <u8 as Shl<u8>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a usize> for u8`

[src]`type Output = <u8 as Shl<usize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a usize) -> <u8 as Shl<usize>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a u64> for &'b u8`

[src]`type Output = <u8 as Shl<u64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u64) -> <u8 as Shl<u64>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a i16> for &'b u8`

[src]`type Output = <u8 as Shl<i16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i16) -> <u8 as Shl<i16>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<u8> for &'a u8`

[src]`type Output = <u8 as Shl<u8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u8) -> <u8 as Shl<u8>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a usize> for &'b u8`

[src]`type Output = <u8 as Shl<usize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a usize) -> <u8 as Shl<usize>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a u8> for u8`

[src]`type Output = <u8 as Shl<u8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u8) -> <u8 as Shl<u8>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a i16> for u8`

[src]`type Output = <u8 as Shl<i16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i16) -> <u8 as Shl<i16>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a i128> for &'b u8`

[src]`type Output = <u8 as Shl<i128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i128) -> <u8 as Shl<i128>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<usize> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: usize) -> u8`

[src]Performs the `<<`

operation.

`impl<'a> Shl<i16> for &'a u8`

[src]`type Output = <u8 as Shl<i16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i16) -> <u8 as Shl<i16>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<i64> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i64) -> u8`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a u32> for &'b u8`

[src]`type Output = <u8 as Shl<u32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u32) -> <u8 as Shl<u32>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<u16> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u16) -> u8`

[src]Performs the `<<`

operation.

`impl Shl<i8> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i8) -> u8`

[src]Performs the `<<`

operation.

`impl<'a> Shl<u16> for &'a u8`

[src]`type Output = <u8 as Shl<u16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u16) -> <u8 as Shl<u16>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<i8> for &'a u8`

[src]`type Output = <u8 as Shl<i8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i8) -> <u8 as Shl<i8>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a u64> for u8`

[src]`type Output = <u8 as Shl<u64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u64) -> <u8 as Shl<u64>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<i64> for &'a u8`

[src]`type Output = <u8 as Shl<i64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i64) -> <u8 as Shl<i64>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<isize> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: isize) -> u8`

[src]Performs the `<<`

operation.

`impl Shl<i32> for u8`

[src]`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i32) -> u8`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a i64> for u8`

[src]`type Output = <u8 as Shl<i64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i64) -> <u8 as Shl<i64>>::Output`

[src]Performs the `<<`

operation.

`impl BitAnd<u8> for u8`

[src]`type Output = u8`

The resulting type after applying the `&`

operator.

`fn bitand(self, rhs: u8) -> u8`

[src]Performs the `&`

operation.

`impl<'a, 'b> BitAnd<&'a u8> for &'b u8`

[src]`type Output = <u8 as BitAnd<u8>>::Output`

The resulting type after applying the `&`

operator.

`fn bitand(self, other: &'a u8) -> <u8 as BitAnd<u8>>::Output`

[src]Performs the `&`

operation.

`impl<'a> BitAnd<&'a u8> for u8`

[src]`type Output = <u8 as BitAnd<u8>>::Output`

The resulting type after applying the `&`

operator.

`fn bitand(self, other: &'a u8) -> <u8 as BitAnd<u8>>::Output`

[src]Performs the `&`

operation.

`impl<'a> BitAnd<u8> for &'a u8`

[src]`type Output = <u8 as BitAnd<u8>>::Output`

The resulting type after applying the `&`

operator.

`fn bitand(self, other: u8) -> <u8 as BitAnd<u8>>::Output`

[src]Performs the `&`

operation.

`impl Default for u8`

[src]`impl<'a> ShlAssign<&'a i16> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a i16)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<i16> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: i16)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a i8> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a i8)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<isize> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: isize)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a i128> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a i128)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<i8> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: i8)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<u32> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: u32)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a i32> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a i32)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<u8> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: u8)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a u16> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a u16)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a u128> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a u128)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<i64> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: i64)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<i32> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: i32)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<u64> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: u64)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a u64> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a u64)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<u128> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: u128)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a isize> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a isize)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<i128> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: i128)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a u32> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a u32)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a u8> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a u8)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a i64> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a i64)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<usize> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: usize)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<u16> for u8`

[src]1.8.0

`fn shl_assign(&mut self, other: u16)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a usize> for u8`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a usize)`

[src]Performs the `<<=`

operation.

`impl<'a> BitXorAssign<&'a u8> for u8`

[src]1.22.0

`fn bitxor_assign(&mut self, other: &'a u8)`

[src]Performs the `^=`

operation.

`impl BitXorAssign<u8> for u8`

[src]1.8.0

`fn bitxor_assign(&mut self, other: u8)`

[src]Performs the `^=`

operation.

`impl<'a, 'b> Div<&'a u8> for &'b u8`

[src]`type Output = <u8 as Div<u8>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: &'a u8) -> <u8 as Div<u8>>::Output`

[src]Performs the `/`

operation.

`impl Div<u8> for u8`

[src]This operation rounds towards zero, truncating any fractional part of the exact result.

`type Output = u8`

The resulting type after applying the `/`

operator.

`fn div(self, other: u8) -> u8`

[src]Performs the `/`

operation.

`impl<'a> Div<&'a u8> for u8`

[src]`type Output = <u8 as Div<u8>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: &'a u8) -> <u8 as Div<u8>>::Output`

[src]Performs the `/`

operation.

`impl<'a> Div<u8> for &'a u8`

[src]`type Output = <u8 as Div<u8>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: u8) -> <u8 as Div<u8>>::Output`

[src]Performs the `/`

operation.

`impl BitOrAssign<u8> for u8`

[src]1.8.0

`fn bitor_assign(&mut self, other: u8)`

[src]Performs the `|=`

operation.

`impl<'a> BitOrAssign<&'a u8> for u8`

[src]1.22.0

`fn bitor_assign(&mut self, other: &'a u8)`

[src]Performs the `|=`

operation.

`impl BitAndAssign<u8> for u8`

[src]1.8.0

`fn bitand_assign(&mut self, other: u8)`

[src]Performs the `&=`

operation.

`impl<'a> BitAndAssign<&'a u8> for u8`

[src]1.22.0

`fn bitand_assign(&mut self, other: &'a u8)`

[src]Performs the `&=`

operation.

`impl LowerHex for u8`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter.

`impl<'a> Add<u8> for &'a u8`

[src]`type Output = <u8 as Add<u8>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: u8) -> <u8 as Add<u8>>::Output`

[src]Performs the `+`

operation.

`impl Add<u8> for u8`

[src]`type Output = u8`

The resulting type after applying the `+`

operator.

`fn add(self, other: u8) -> u8`

[src]Performs the `+`

operation.

`impl<'a> Add<&'a u8> for u8`

[src]`type Output = <u8 as Add<u8>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: &'a u8) -> <u8 as Add<u8>>::Output`

[src]Performs the `+`

operation.

`impl<'a, 'b> Add<&'a u8> for &'b u8`

[src]`type Output = <u8 as Add<u8>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: &'a u8) -> <u8 as Add<u8>>::Output`

[src]Performs the `+`

operation.

`impl Product<u8> for u8`

[src]1.12.0

`fn product<I>(iter: I) -> u8 where`

Â Â Â Â I: Iterator<Item = u8>,Â

[src]Method which takes an iterator and generates `Self`

from the elements by multiplying the items. Read more

`impl<'a> Product<&'a u8> for u8`

[src]1.12.0

`fn product<I>(iter: I) -> u8 where`

Â Â Â Â I: Iterator<Item = &'a u8>,Â

[src]`Self`

from the elements by multiplying the items. Read more

`impl Display for u8`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter. Read more

`impl<'a> BitOr<&'a u8> for u8`

[src]`type Output = <u8 as BitOr<u8>>::Output`

The resulting type after applying the `|`

operator.

`fn bitor(self, other: &'a u8) -> <u8 as BitOr<u8>>::Output`

[src]Performs the `|`

operation.

`impl BitOr<u8> for u8`

[src]`type Output = u8`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: u8) -> u8`

[src]Performs the `|`

operation.

`impl<'a, 'b> BitOr<&'a u8> for &'b u8`

[src]`type Output = <u8 as BitOr<u8>>::Output`

The resulting type after applying the `|`

operator.

`fn bitor(self, other: &'a u8) -> <u8 as BitOr<u8>>::Output`

[src]Performs the `|`

operation.

`impl<'a> BitOr<u8> for &'a u8`

[src]`type Output = <u8 as BitOr<u8>>::Output`

The resulting type after applying the `|`

operator.

`fn bitor(self, other: u8) -> <u8 as BitOr<u8>>::Output`

[src]Performs the `|`

operation.

`impl AsciiExt for u8`

[src]`type Owned = u8`

Deprecated since 1.26.0: use inherent methods instead

Container type for copied ASCII characters.

`fn is_ascii(&self) -> bool`

[src]Deprecated since 1.26.0: use inherent methods instead

Checks if the value is within the ASCII range. Read more

`fn to_ascii_uppercase(&self) -> Self::Owned`

[src]Deprecated since 1.26.0: use inherent methods instead

Makes a copy of the value in its ASCII upper case equivalent. Read more

`fn to_ascii_lowercase(&self) -> Self::Owned`

[src]Deprecated since 1.26.0: use inherent methods instead

Makes a copy of the value in its ASCII lower case equivalent. Read more

`fn eq_ignore_ascii_case(&self, o: &Self) -> bool`

[src]Deprecated since 1.26.0: use inherent methods instead

Checks that two values are an ASCII case-insensitive match. Read more

`fn make_ascii_uppercase(&mut self)`

[src]Deprecated since 1.26.0: use inherent methods instead

Converts this type to its ASCII upper case equivalent in-place. Read more

`fn make_ascii_lowercase(&mut self)`

[src]Deprecated since 1.26.0: use inherent methods instead

Converts this type to its ASCII lower case equivalent in-place. Read more

`impl<T, U> TryFrom for T where`

Â Â Â Â T: From<U>,Â

[src]`type Error = !`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl<T> From for T`

[src]`impl<T, U> TryInto for T where`

Â Â Â Â U: TryFrom<T>,Â

[src]`type Error = <U as TryFrom<T>>::Error`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl<T, U> Into for T where`

Â Â Â Â U: From<T>,Â

[src]`impl<T> Borrow for T where`

Â Â Â Â T: ?Sized,Â

[src]`fn borrow(&self) -> &T`

[src]â“˜Important traits for &'a mut I

impl<'a, I> Iterator for &'a mut I where Â Â Â Â I: Iterator + ?Sized,Â type Item = <I as Iterator>::Item; impl<'a, R:Â Read + ?Sized> Read for &'a mut R impl<'a, W:Â Write + ?Sized> Write for &'a mut W

Immutably borrows from an owned value. Read more

`impl<T> BorrowMut for T where`

Â Â Â Â T: ?Sized,Â

[src]`fn borrow_mut(&mut self) -> &mut T`

[src]â“˜Important traits for &'a mut I

impl<'a, I> Iterator for &'a mut I where Â Â Â Â I: Iterator + ?Sized,Â type Item = <I as Iterator>::Item; impl<'a, R:Â Read + ?Sized> Read for &'a mut R impl<'a, W:Â Write + ?Sized> Write for &'a mut W

Mutably borrows from an owned value. Read more

`impl<T> Any for T where`

Â Â Â Â T: 'static + ?Sized,Â

[src]`fn get_type_id(&self) -> TypeId`

[src]ðŸ”¬ This is a nightly-only experimental API. (get_type_id #27745)this method will likely be replaced by an associated static

Gets the `TypeId`

of `self`

. Read more

`impl<T> ToOwned for T where`

Â Â Â Â T: Clone,Â

[src]`type Owned = T`

`fn to_owned(&self) -> T`

[src]Creates owned data from borrowed data, usually by cloning. Read more

`fn clone_into(&self, target: &mut T)`

[src]ðŸ”¬ This is a nightly-only experimental API. (toowned_clone_into #41263)recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

`impl<T> ToString for T where`

Â Â Â Â T: Display + ?Sized,Â

[src]
Â© 2010 The Rust Project Developers

Licensed under the Apache License, Version 2.0 or the MIT license, at your option.

https://doc.rust-lang.org/std/primitive.u8.html