The pointer-sized unsigned integer type.

*See also the std::usize module.*

The size of this primitive is how many bytes it takes to reference any location in memory. For example, on a 32 bit target, this is 4 bytes and on a 64 bit target, this is 8 bytes.

`impl usize`

[src]`pub const fn min_value() -> usize`

[src]Returns the smallest value that can be represented by this integer type.

Basic usage:

assert_eq!(usize::min_value(), 0);

`pub const fn max_value() -> usize`

[src]Returns the largest value that can be represented by this integer type.

Basic usage:

assert_eq!(usize::max_value(), 18446744073709551615);

`pub fn from_str_radix(src: &str, radix: u32) -> Result<usize, ParseIntError>`

[src]Converts a string slice in a given base to an integer.

The string is expected to be an optional `+`

sign followed by digits. Leading and trailing whitespace represent an error. Digits are a subset of these characters, depending on `radix`

:

`0-9`

`a-z`

`A-Z`

This function panics if `radix`

is not in the range from 2 to 36.

Basic usage:

assert_eq!(usize::from_str_radix("A", 16), Ok(10));

`pub const fn count_ones(self) -> u32`

[src]Returns the number of ones in the binary representation of `self`

.

Basic usage:

let n = 0b01001100usize; assert_eq!(n.count_ones(), 3);

`pub const fn count_zeros(self) -> u32`

[src]Returns the number of zeros in the binary representation of `self`

.

Basic usage:

assert_eq!(usize::max_value().count_zeros(), 0);

`pub const fn leading_zeros(self) -> u32`

[src]Returns the number of leading zeros in the binary representation of `self`

.

Basic usage:

let n = usize::max_value() >> 2; assert_eq!(n.leading_zeros(), 2);

`pub const fn trailing_zeros(self) -> u32`

[src]Returns the number of trailing zeros in the binary representation of `self`

.

Basic usage:

let n = 0b0101000usize; assert_eq!(n.trailing_zeros(), 3);

`pub const fn rotate_left(self, n: u32) -> usize`

[src]Shifts the bits to the left by a specified amount, `n`

, wrapping the truncated bits to the end of the resulting integer.

Please note this isn't the same operation as `<<`

!

Basic usage:

let n = 0xaa00000000006e1usize; let m = 0x6e10aa; assert_eq!(n.rotate_left(12), m);

`pub const fn rotate_right(self, n: u32) -> usize`

[src]Shifts the bits to the right by a specified amount, `n`

, wrapping the truncated bits to the beginning of the resulting integer.

Please note this isn't the same operation as `>>`

!

Basic usage:

let n = 0x6e10aausize; let m = 0xaa00000000006e1; assert_eq!(n.rotate_right(12), m);

`pub const fn swap_bytes(self) -> usize`

[src]Reverses the byte order of the integer.

Basic usage:

let n = 0x1234567890123456usize; let m = n.swap_bytes(); assert_eq!(m, 0x5634129078563412);

`pub const fn reverse_bits(self) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (reverse_bits #48763)

Reverses the bit pattern of the integer.

Basic usage:

#![feature(reverse_bits)] let n = 0x1234567890123456usize; let m = n.reverse_bits(); assert_eq!(m, 0x6a2c48091e6a2c48);

`pub const fn from_be(x: usize) -> usize`

[src]Converts an integer from big endian to the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Basic usage:

let n = 0x1Ausize; if cfg!(target_endian = "big") { assert_eq!(usize::from_be(n), n) } else { assert_eq!(usize::from_be(n), n.swap_bytes()) }

`pub const fn from_le(x: usize) -> usize`

[src]Converts an integer from little endian to the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Basic usage:

let n = 0x1Ausize; if cfg!(target_endian = "little") { assert_eq!(usize::from_le(n), n) } else { assert_eq!(usize::from_le(n), n.swap_bytes()) }

`pub const fn to_be(self) -> usize`

[src]Converts `self`

to big endian from the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Basic usage:

let n = 0x1Ausize; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }

`pub const fn to_le(self) -> usize`

[src]Converts `self`

to little endian from the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Basic usage:

let n = 0x1Ausize; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }

`pub fn checked_add(self, rhs: usize) -> Option<usize>`

[src]Checked integer addition. Computes `self + rhs`

, returning `None`

if overflow occurred.

Basic usage:

assert_eq!((usize::max_value() - 2).checked_add(1), Some(usize::max_value() - 1)); assert_eq!((usize::max_value() - 2).checked_add(3), None);

`pub fn checked_sub(self, rhs: usize) -> Option<usize>`

[src]Checked integer subtraction. Computes `self - rhs`

, returning `None`

if overflow occurred.

Basic usage:

assert_eq!(1usize.checked_sub(1), Some(0)); assert_eq!(0usize.checked_sub(1), None);

`pub fn checked_mul(self, rhs: usize) -> Option<usize>`

[src]Checked integer multiplication. Computes `self * rhs`

, returning `None`

if overflow occurred.

Basic usage:

assert_eq!(5usize.checked_mul(1), Some(5)); assert_eq!(usize::max_value().checked_mul(2), None);

`pub fn checked_div(self, rhs: usize) -> Option<usize>`

[src]Checked integer division. Computes `self / rhs`

, returning `None`

if `rhs == 0`

.

Basic usage:

assert_eq!(128usize.checked_div(2), Some(64)); assert_eq!(1usize.checked_div(0), None);

`pub fn checked_div_euc(self, rhs: usize) -> Option<usize>`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Checked Euclidean division. Computes `self.div_euc(rhs)`

, returning `None`

if `rhs == 0`

.

Basic usage:

#![feature(euclidean_division)] assert_eq!(128usize.checked_div(2), Some(64)); assert_eq!(1usize.checked_div_euc(0), None);

`pub fn checked_rem(self, rhs: usize) -> Option<usize>`

[src]1.7.0

Checked integer remainder. Computes `self % rhs`

, returning `None`

if `rhs == 0`

.

Basic usage:

assert_eq!(5usize.checked_rem(2), Some(1)); assert_eq!(5usize.checked_rem(0), None);

`pub fn checked_mod_euc(self, rhs: usize) -> Option<usize>`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Checked Euclidean modulo. Computes `self.mod_euc(rhs)`

, returning `None`

if `rhs == 0`

.

Basic usage:

#![feature(euclidean_division)] assert_eq!(5usize.checked_mod_euc(2), Some(1)); assert_eq!(5usize.checked_mod_euc(0), None);

`pub fn checked_neg(self) -> Option<usize>`

[src]1.7.0

Checked negation. Computes `-self`

, returning `None`

unless `self == 0`

.

Note that negating any positive integer will overflow.

Basic usage:

assert_eq!(0usize.checked_neg(), Some(0)); assert_eq!(1usize.checked_neg(), None);

`pub fn checked_shl(self, rhs: u32) -> Option<usize>`

[src]1.7.0

Checked shift left. Computes `self << rhs`

, returning `None`

if `rhs`

is larger than or equal to the number of bits in `self`

.

Basic usage:

assert_eq!(0x1usize.checked_shl(4), Some(0x10)); assert_eq!(0x10usize.checked_shl(129), None);

`pub fn checked_shr(self, rhs: u32) -> Option<usize>`

[src]1.7.0

Checked shift right. Computes `self >> rhs`

, returning `None`

if `rhs`

is larger than or equal to the number of bits in `self`

.

Basic usage:

assert_eq!(0x10usize.checked_shr(4), Some(0x1)); assert_eq!(0x10usize.checked_shr(129), None);

`pub fn checked_pow(self, exp: u32) -> Option<usize>`

[src]ðŸ”¬ This is a nightly-only experimental API. (no_panic_pow #48320)

Checked exponentiation. Computes `self.pow(exp)`

, returning `None`

if overflow occurred.

Basic usage:

#![feature(no_panic_pow)] assert_eq!(2usize.checked_pow(5), Some(32)); assert_eq!(usize::max_value().checked_pow(2), None);

`pub fn saturating_add(self, rhs: usize) -> usize`

[src]Saturating integer addition. Computes `self + rhs`

, saturating at the numeric bounds instead of overflowing.

Basic usage:

assert_eq!(100usize.saturating_add(1), 101); assert_eq!(200u8.saturating_add(127), 255);

`pub fn saturating_sub(self, rhs: usize) -> usize`

[src]Saturating integer subtraction. Computes `self - rhs`

, saturating at the numeric bounds instead of overflowing.

Basic usage:

assert_eq!(100usize.saturating_sub(27), 73); assert_eq!(13usize.saturating_sub(127), 0);

`pub fn saturating_mul(self, rhs: usize) -> usize`

[src]1.7.0

Saturating integer multiplication. Computes `self * rhs`

, saturating at the numeric bounds instead of overflowing.

Basic usage:

use std::usize; assert_eq!(2usize.saturating_mul(10), 20); assert_eq!((usize::MAX).saturating_mul(10), usize::MAX);

`pub fn saturating_pow(self, exp: u32) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (no_panic_pow #48320)

Saturating integer exponentiation. Computes `self.pow(exp)`

, saturating at the numeric bounds instead of overflowing.

Basic usage:

#![feature(no_panic_pow)] use std::usize; assert_eq!(4usize.saturating_pow(3), 64); assert_eq!(usize::MAX.saturating_pow(2), usize::MAX);

`pub const fn wrapping_add(self, rhs: usize) -> usize`

[src]Wrapping (modular) addition. Computes `self + rhs`

, wrapping around at the boundary of the type.

Basic usage:

assert_eq!(200usize.wrapping_add(55), 255); assert_eq!(200usize.wrapping_add(usize::max_value()), 199);

`pub const fn wrapping_sub(self, rhs: usize) -> usize`

[src]Wrapping (modular) subtraction. Computes `self - rhs`

, wrapping around at the boundary of the type.

Basic usage:

assert_eq!(100usize.wrapping_sub(100), 0); assert_eq!(100usize.wrapping_sub(usize::max_value()), 101);

`pub const fn wrapping_mul(self, rhs: usize) -> usize`

[src]Wrapping (modular) multiplication. Computes `self * rhs`

, wrapping around at the boundary of the type.

Basic usage:

Please note that this example is shared between integer types. Which explains why `u8`

is used here.

assert_eq!(10u8.wrapping_mul(12), 120); assert_eq!(25u8.wrapping_mul(12), 44);

`pub fn wrapping_div(self, rhs: usize) -> usize`

[src]1.2.0

Wrapping (modular) division. Computes `self / rhs`

. Wrapped division on unsigned types is just normal division. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Basic usage:

assert_eq!(100usize.wrapping_div(10), 10);

`pub fn wrapping_div_euc(self, rhs: usize) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Wrapping Euclidean division. Computes `self.div_euc(rhs)`

. Wrapped division on unsigned types is just normal division. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Basic usage:

#![feature(euclidean_division)] assert_eq!(100usize.wrapping_div_euc(10), 10);

`pub fn wrapping_rem(self, rhs: usize) -> usize`

[src]1.2.0

Wrapping (modular) remainder. Computes `self % rhs`

. Wrapped remainder calculation on unsigned types is just the regular remainder calculation. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Basic usage:

assert_eq!(100usize.wrapping_rem(10), 0);

`pub fn wrapping_mod_euc(self, rhs: usize) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Wrapping Euclidean modulo. Computes `self.mod_euc(rhs)`

. Wrapped modulo calculation on unsigned types is just the regular remainder calculation. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Basic usage:

#![feature(euclidean_division)] assert_eq!(100usize.wrapping_mod_euc(10), 0);

`pub fn wrapping_neg(self) -> usize`

[src]1.2.0

Wrapping (modular) negation. Computes `-self`

, wrapping around at the boundary of the type.

Since unsigned types do not have negative equivalents all applications of this function will wrap (except for `-0`

). For values smaller than the corresponding signed type's maximum the result is the same as casting the corresponding signed value. Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)`

where `MAX`

is the corresponding signed type's maximum.

Basic usage:

Please note that this example is shared between integer types. Which explains why `i8`

is used here.

assert_eq!(100i8.wrapping_neg(), -100); assert_eq!((-128i8).wrapping_neg(), -128);

`pub const fn wrapping_shl(self, rhs: u32) -> usize`

[src]1.2.0

Panic-free bitwise shift-left; yields `self << mask(rhs)`

, where `mask`

removes any high-order bits of `rhs`

that would cause the shift to exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a `rotate_left`

function, which may be what you want instead.

Basic usage:

assert_eq!(1usize.wrapping_shl(7), 128); assert_eq!(1usize.wrapping_shl(128), 1);

`pub const fn wrapping_shr(self, rhs: u32) -> usize`

[src]1.2.0

Panic-free bitwise shift-right; yields `self >> mask(rhs)`

, where `mask`

removes any high-order bits of `rhs`

that would cause the shift to exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a `rotate_right`

function, which may be what you want instead.

Basic usage:

assert_eq!(128usize.wrapping_shr(7), 1); assert_eq!(128usize.wrapping_shr(128), 128);

`pub fn wrapping_pow(self, exp: u32) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (no_panic_pow #48320)

Wrapping (modular) exponentiation. Computes `self.pow(exp)`

, wrapping around at the boundary of the type.

Basic usage:

#![feature(no_panic_pow)] assert_eq!(3usize.wrapping_pow(5), 243); assert_eq!(3u8.wrapping_pow(6), 217);

`pub const fn overflowing_add(self, rhs: usize) -> (usize, bool)`

[src]1.7.0

Calculates `self`

+ `rhs`

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Basic usage

use std::usize; assert_eq!(5usize.overflowing_add(2), (7, false)); assert_eq!(usize::MAX.overflowing_add(1), (0, true));

`pub const fn overflowing_sub(self, rhs: usize) -> (usize, bool)`

[src]1.7.0

Calculates `self`

- `rhs`

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Basic usage

use std::usize; assert_eq!(5usize.overflowing_sub(2), (3, false)); assert_eq!(0usize.overflowing_sub(1), (usize::MAX, true));

`pub const fn overflowing_mul(self, rhs: usize) -> (usize, bool)`

[src]1.7.0

Calculates the multiplication of `self`

and `rhs`

.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Basic usage:

Please note that this example is shared between integer types. Which explains why `u32`

is used here.

assert_eq!(5u32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));

`pub fn overflowing_div(self, rhs: usize) -> (usize, bool)`

[src]1.7.0

Calculates the divisor when `self`

is divided by `rhs`

.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always `false`

.

This function will panic if `rhs`

is 0.

Basic usage

assert_eq!(5usize.overflowing_div(2), (2, false));

`pub fn overflowing_div_euc(self, rhs: usize) -> (usize, bool)`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Calculates the quotient of Euclidean division `self.div_euc(rhs)`

.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always `false`

.

This function will panic if `rhs`

is 0.

Basic usage

#![feature(euclidean_division)] assert_eq!(5usize.overflowing_div_euc(2), (2, false));

`pub fn overflowing_rem(self, rhs: usize) -> (usize, bool)`

[src]1.7.0

Calculates the remainder when `self`

is divided by `rhs`

.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always `false`

.

This function will panic if `rhs`

is 0.

Basic usage

assert_eq!(5usize.overflowing_rem(2), (1, false));

`pub fn overflowing_mod_euc(self, rhs: usize) -> (usize, bool)`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Calculates the remainder `self.mod_euc(rhs)`

by Euclidean division.

Returns a tuple of the modulo after dividing along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always `false`

.

This function will panic if `rhs`

is 0.

Basic usage

#![feature(euclidean_division)] assert_eq!(5usize.overflowing_mod_euc(2), (1, false));

`pub fn overflowing_neg(self) -> (usize, bool)`

[src]1.7.0

Negates self in an overflowing fashion.

Returns `!self + 1`

using wrapping operations to return the value that represents the negation of this unsigned value. Note that for positive unsigned values overflow always occurs, but negating 0 does not overflow.

Basic usage

assert_eq!(0usize.overflowing_neg(), (0, false)); assert_eq!(2usize.overflowing_neg(), (-2i32 as usize, true));

`pub const fn overflowing_shl(self, rhs: u32) -> (usize, bool)`

[src]1.7.0

Shifts self left by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Basic usage

assert_eq!(0x1usize.overflowing_shl(4), (0x10, false)); assert_eq!(0x1usize.overflowing_shl(132), (0x10, true));

`pub const fn overflowing_shr(self, rhs: u32) -> (usize, bool)`

[src]1.7.0

Shifts self right by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Basic usage

assert_eq!(0x10usize.overflowing_shr(4), (0x1, false)); assert_eq!(0x10usize.overflowing_shr(132), (0x1, true));

`pub fn overflowing_pow(self, exp: u32) -> (usize, bool)`

[src]ðŸ”¬ This is a nightly-only experimental API. (no_panic_pow #48320)

Raises self to the power of `exp`

, using exponentiation by squaring.

Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.

Basic usage:

#![feature(no_panic_pow)] assert_eq!(3usize.overflowing_pow(5), (243, false)); assert_eq!(3u8.overflowing_pow(6), (217, true));

`pub fn pow(self, exp: u32) -> usize`

[src]Raises self to the power of `exp`

, using exponentiation by squaring.

Basic usage:

assert_eq!(2usize.pow(5), 32);

`pub fn div_euc(self, rhs: usize) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Performs Euclidean division.

For unsigned types, this is just the same as `self / rhs`

.

Basic usage:

#![feature(euclidean_division)] assert_eq!(7usize.div_euc(4), 1); // or any other integer type

`pub fn mod_euc(self, rhs: usize) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (euclidean_division #49048)

Calculates the remainder `self mod rhs`

by Euclidean division.

For unsigned types, this is just the same as `self % rhs`

.

Basic usage:

#![feature(euclidean_division)] assert_eq!(7usize.mod_euc(4), 3); // or any other integer type

`pub fn is_power_of_two(self) -> bool`

[src]Returns `true`

if and only if `self == 2^k`

for some `k`

.

Basic usage:

assert!(16usize.is_power_of_two()); assert!(!10usize.is_power_of_two());

`pub fn next_power_of_two(self) -> usize`

[src]Returns the smallest power of two greater than or equal to `self`

.

When return value overflows (i.e. `self > (1 << (N-1))`

for type `uN`

), it panics in debug mode and return value is wrapped to 0 in release mode (the only situation in which method can return 0).

Basic usage:

assert_eq!(2usize.next_power_of_two(), 2); assert_eq!(3usize.next_power_of_two(), 4);

`pub fn checked_next_power_of_two(self) -> Option<usize>`

[src]Returns the smallest power of two greater than or equal to `n`

. If the next power of two is greater than the type's maximum value, `None`

is returned, otherwise the power of two is wrapped in `Some`

.

Basic usage:

assert_eq!(2usize.checked_next_power_of_two(), Some(2)); assert_eq!(3usize.checked_next_power_of_two(), Some(4)); assert_eq!(usize::max_value().checked_next_power_of_two(), None);

`pub fn wrapping_next_power_of_two(self) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (wrapping_next_power_of_two #32463)needs decision on wrapping behaviour

Returns the smallest power of two greater than or equal to `n`

. If the next power of two is greater than the type's maximum value, the return value is wrapped to `0`

.

Basic usage:

#![feature(wrapping_next_power_of_two)] assert_eq!(2usize.wrapping_next_power_of_two(), 2); assert_eq!(3usize.wrapping_next_power_of_two(), 4); assert_eq!(usize::max_value().wrapping_next_power_of_two(), 0);

`pub const fn to_be_bytes(self) -> [u8; 8]`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Return the memory representation of this integer as a byte array in big-endian (network) byte order.

#![feature(int_to_from_bytes)] let bytes = 0x1234567890123456usize.to_be_bytes(); assert_eq!(bytes, [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);

`pub const fn to_le_bytes(self) -> [u8; 8]`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Return the memory representation of this integer as a byte array in little-endian byte order.

#![feature(int_to_from_bytes)] let bytes = 0x1234567890123456usize.to_le_bytes(); assert_eq!(bytes, [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);

`pub const fn to_ne_bytes(self) -> [u8; 8]`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Return the memory representation of this integer as a byte array in native byte order.

As the target platform's native endianness is used, portable code should use `to_be_bytes`

or `to_le_bytes`

, as appropriate, instead.

#![feature(int_to_from_bytes)] let bytes = 0x1234567890123456usize.to_ne_bytes(); assert_eq!(bytes, if cfg!(target_endian = "big") { [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56] } else { [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12] });

`pub const fn from_be_bytes(bytes: [u8; 8]) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Create an integer value from its representation as a byte array in big endian.

#![feature(int_to_from_bytes)] let value = usize::from_be_bytes([0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]); assert_eq!(value, 0x1234567890123456);

`pub const fn from_le_bytes(bytes: [u8; 8]) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Create an integer value from its representation as a byte array in little endian.

#![feature(int_to_from_bytes)] let value = usize::from_le_bytes([0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]); assert_eq!(value, 0x1234567890123456);

`pub const fn from_ne_bytes(bytes: [u8; 8]) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (int_to_from_bytes #52963)

Create an integer value from its memory representation as a byte array in native endianness.

As the target platform's native endianness is used, portable code likely wants to use `from_be_bytes`

or `from_le_bytes`

, as appropriate instead.

#![feature(int_to_from_bytes)] let value = usize::from_ne_bytes(if cfg!(target_endian = "big") { [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56] } else { [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12] }); assert_eq!(value, 0x1234567890123456);

`impl TryFrom<u64> for usize`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(value: u64) -> Result<usize, <usize as TryFrom<u64>>::Error>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<i128> for usize`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: i128) -> Result<usize, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<i8> for usize`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: i8) -> Result<usize, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<i16> for usize`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: i16) -> Result<usize, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<i64> for usize`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: i64) -> Result<usize, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<i32> for usize`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: i32) -> Result<usize, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<u128> for usize`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: u128) -> Result<usize, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<u32> for usize`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(value: u32) -> Result<usize, <usize as TryFrom<u32>>::Error>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl TryFrom<isize> for usize`

[src]`type Error = TryFromIntError`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(u: isize) -> Result<usize, TryFromIntError>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl<T> SliceIndex<[T]> for usize`

[src]1.15.0

`type Output = T`

The output type returned by methods.

`fn get(self, slice: &[T]) -> Option<&T>`

[src]ðŸ”¬ This is a nightly-only experimental API. (slice_index_methods)

Returns a shared reference to the output at this location, if in bounds. Read more

`fn get_mut(self, slice: &mut [T]) -> Option<&mut T>`

[src]ðŸ”¬ This is a nightly-only experimental API. (slice_index_methods)

Returns a mutable reference to the output at this location, if in bounds. Read more

`unsafe fn get_unchecked(self, slice: &[T]) -> &T`

[src]â“˜Important traits for &'a mut I

impl<'a, I> Iterator for &'a mut I where Â Â Â Â I: Iterator + ?Sized,Â type Item = <I as Iterator>::Item; impl<'a, R:Â Read + ?Sized> Read for &'a mut R impl<'a, W:Â Write + ?Sized> Write for &'a mut W

ðŸ”¬ This is a nightly-only experimental API. (slice_index_methods)

Returns a shared reference to the output at this location, without performing any bounds checking. Read more

`unsafe fn get_unchecked_mut(self, slice: &mut [T]) -> &mut T`

[src]â“˜Important traits for &'a mut I

impl<'a, I> Iterator for &'a mut I where Â Â Â Â I: Iterator + ?Sized,Â type Item = <I as Iterator>::Item; impl<'a, R:Â Read + ?Sized> Read for &'a mut R impl<'a, W:Â Write + ?Sized> Write for &'a mut W

ðŸ”¬ This is a nightly-only experimental API. (slice_index_methods)

Returns a mutable reference to the output at this location, without performing any bounds checking. Read more

`fn index(self, slice: &[T]) -> &T`

[src]â“˜Important traits for &'a mut I

impl<'a, I> Iterator for &'a mut I where Â Â Â Â I: Iterator + ?Sized,Â type Item = <I as Iterator>::Item; impl<'a, R:Â Read + ?Sized> Read for &'a mut R impl<'a, W:Â Write + ?Sized> Write for &'a mut W

ðŸ”¬ This is a nightly-only experimental API. (slice_index_methods)

Returns a shared reference to the output at this location, panicking if out of bounds. Read more

`fn index_mut(self, slice: &mut [T]) -> &mut T`

[src]ðŸ”¬ This is a nightly-only experimental API. (slice_index_methods)

Returns a mutable reference to the output at this location, panicking if out of bounds. Read more

`impl FromStr for usize`

[src]`type Err = ParseIntError`

The associated error which can be returned from parsing.

`fn from_str(src: &str) -> Result<usize, ParseIntError>`

[src]Parses a string `s`

to return a value of this type. Read more

`impl RemAssign<usize> for usize`

[src]1.8.0

`fn rem_assign(&mut self, other: usize)`

[src]Performs the `%=`

operation.

`impl<'a> RemAssign<&'a usize> for usize`

[src]1.22.0

`fn rem_assign(&mut self, other: &'a usize)`

[src]Performs the `%=`

operation.

`impl<'a> DivAssign<&'a usize> for usize`

[src]1.22.0

`fn div_assign(&mut self, other: &'a usize)`

[src]Performs the `/=`

operation.

`impl DivAssign<usize> for usize`

[src]1.8.0

`fn div_assign(&mut self, other: usize)`

[src]Performs the `/=`

operation.

`impl<'a> MulAssign<&'a usize> for usize`

[src]1.22.0

`fn mul_assign(&mut self, other: &'a usize)`

[src]Performs the `*=`

operation.

`impl MulAssign<usize> for usize`

[src]1.8.0

`fn mul_assign(&mut self, other: usize)`

[src]Performs the `*=`

operation.

`impl<'a> SubAssign<&'a usize> for usize`

[src]1.22.0

`fn sub_assign(&mut self, other: &'a usize)`

[src]Performs the `-=`

operation.

`impl SubAssign<usize> for usize`

[src]1.8.0

`fn sub_assign(&mut self, other: usize)`

[src]Performs the `-=`

operation.

`impl Hash for usize`

[src]`fn hash<H>(&self, state: &mut H) where`

Â Â Â Â H: Hasher,Â

[src]Feeds this value into the given [`Hasher`

]. Read more

`fn hash_slice<H>(data: &[usize], state: &mut H) where`

Â Â Â Â H: Hasher,Â

[src]Feeds a slice of this type into the given [`Hasher`

]. Read more

`impl AddAssign<usize> for usize`

[src]1.8.0

`fn add_assign(&mut self, other: usize)`

[src]Performs the `+=`

operation.

`impl<'a> AddAssign<&'a usize> for usize`

[src]1.22.0

`fn add_assign(&mut self, other: &'a usize)`

[src]Performs the `+=`

operation.

`impl<'a> ShrAssign<&'a i16> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a i16)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a u32> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a u32)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<i32> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: i32)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<i64> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: i64)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a i32> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a i32)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a i128> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a i128)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<usize> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: usize)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a i8> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a i8)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a i64> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a i64)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<u128> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: u128)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<isize> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: isize)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a u8> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a u8)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<u32> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: u32)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a usize> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a usize)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<u64> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: u64)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<u8> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: u8)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<u16> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: u16)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<i128> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: i128)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<i16> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: i16)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a u16> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a u16)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a u64> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a u64)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a u128> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a u128)`

[src]Performs the `>>=`

operation.

`impl ShrAssign<i8> for usize`

[src]1.8.0

`fn shr_assign(&mut self, other: i8)`

[src]Performs the `>>=`

operation.

`impl<'a> ShrAssign<&'a isize> for usize`

[src]1.22.0

`fn shr_assign(&mut self, other: &'a isize)`

[src]Performs the `>>=`

operation.

`impl Clone for usize`

[src]`fn clone(&self) -> usize`

[src]Returns a copy of the value. Read more

`fn clone_from(&mut self, source: &Self)`

[src]Performs copy-assignment from `source`

. Read more

`impl PartialOrd<usize> for usize`

[src]`fn partial_cmp(&self, other: &usize) -> Option<Ordering>`

[src]This method returns an ordering between `self`

and `other`

values if one exists. Read more

`fn lt(&self, other: &usize) -> bool`

[src]This method tests less than (for `self`

and `other`

) and is used by the `<`

operator. Read more

`fn le(&self, other: &usize) -> bool`

[src]This method tests less than or equal to (for `self`

and `other`

) and is used by the `<=`

operator. Read more

`fn ge(&self, other: &usize) -> bool`

[src]This method tests greater than or equal to (for `self`

and `other`

) and is used by the `>=`

operator. Read more

`fn gt(&self, other: &usize) -> bool`

[src]This method tests greater than (for `self`

and `other`

) and is used by the `>`

operator. Read more

`impl Ord for usize`

[src]`fn cmp(&self, other: &usize) -> Ordering`

[src]This method returns an `Ordering`

between `self`

and `other`

. Read more

`fn max(self, other: Self) -> Self`

[src]1.21.0

Compares and returns the maximum of two values. Read more

`fn min(self, other: Self) -> Self`

[src]1.21.0

Compares and returns the minimum of two values. Read more

`impl Sub<usize> for usize`

[src]`type Output = usize`

The resulting type after applying the `-`

operator.

`fn sub(self, other: usize) -> usize`

[src]Performs the `-`

operation.

`impl<'a> Sub<&'a usize> for usize`

[src]`type Output = <usize as Sub<usize>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: &'a usize) -> <usize as Sub<usize>>::Output`

[src]Performs the `-`

operation.

`impl<'a> Sub<usize> for &'a usize`

[src]`type Output = <usize as Sub<usize>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: usize) -> <usize as Sub<usize>>::Output`

[src]Performs the `-`

operation.

`impl<'a, 'b> Sub<&'a usize> for &'b usize`

[src]`type Output = <usize as Sub<usize>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: &'a usize) -> <usize as Sub<usize>>::Output`

[src]Performs the `-`

operation.

`impl<'a, 'b> Shr<&'a u128> for &'b usize`

[src]`type Output = <usize as Shr<u128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u128) -> <usize as Shr<u128>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<u64> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u64) -> usize`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a i128> for usize`

[src]`type Output = <usize as Shr<i128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i128) -> <usize as Shr<i128>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a i16> for usize`

[src]`type Output = <usize as Shr<i16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i16) -> <usize as Shr<i16>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<i64> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i64) -> usize`

[src]Performs the `>>`

operation.

`impl Shr<u32> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u32) -> usize`

[src]Performs the `>>`

operation.

`impl Shr<usize> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: usize) -> usize`

[src]Performs the `>>`

operation.

`impl<'a> Shr<u32> for &'a usize`

[src]`type Output = <usize as Shr<u32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u32) -> <usize as Shr<u32>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a u16> for &'b usize`

[src]`type Output = <usize as Shr<u16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u16) -> <usize as Shr<u16>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<u8> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u8) -> usize`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a u64> for usize`

[src]`type Output = <usize as Shr<u64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u64) -> <usize as Shr<u64>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<isize> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: isize) -> usize`

[src]Performs the `>>`

operation.

`impl Shr<i8> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i8) -> usize`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a i128> for &'b usize`

[src]`type Output = <usize as Shr<i128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i128) -> <usize as Shr<i128>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<i16> for &'a usize`

[src]`type Output = <usize as Shr<i16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i16) -> <usize as Shr<i16>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a i32> for usize`

[src]`type Output = <usize as Shr<i32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i32) -> <usize as Shr<i32>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a usize> for &'b usize`

[src]`type Output = <usize as Shr<usize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a usize) -> <usize as Shr<usize>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<u64> for &'a usize`

[src]`type Output = <usize as Shr<u64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u64) -> <usize as Shr<u64>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<usize> for &'a usize`

[src]`type Output = <usize as Shr<usize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: usize) -> <usize as Shr<usize>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a u128> for usize`

[src]`type Output = <usize as Shr<u128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u128) -> <usize as Shr<u128>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<i64> for &'a usize`

[src]`type Output = <usize as Shr<i64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i64) -> <usize as Shr<i64>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<i16> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i16) -> usize`

[src]Performs the `>>`

operation.

`impl Shr<u16> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u16) -> usize`

[src]Performs the `>>`

operation.

`impl<'a> Shr<u8> for &'a usize`

[src]`type Output = <usize as Shr<u8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u8) -> <usize as Shr<u8>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<u16> for &'a usize`

[src]`type Output = <usize as Shr<u16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u16) -> <usize as Shr<u16>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<i128> for &'a usize`

[src]`type Output = <usize as Shr<i128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i128) -> <usize as Shr<i128>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<i128> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i128) -> usize`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a i8> for &'b usize`

[src]`type Output = <usize as Shr<i8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i8) -> <usize as Shr<i8>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a u32> for usize`

[src]`type Output = <usize as Shr<u32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u32) -> <usize as Shr<u32>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a u64> for &'b usize`

[src]`type Output = <usize as Shr<u64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u64) -> <usize as Shr<u64>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a i8> for usize`

[src]`type Output = <usize as Shr<i8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i8) -> <usize as Shr<i8>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<isize> for &'a usize`

[src]`type Output = <usize as Shr<isize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: isize) -> <usize as Shr<isize>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<i8> for &'a usize`

[src]`type Output = <usize as Shr<i8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i8) -> <usize as Shr<i8>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a i32> for &'b usize`

[src]`type Output = <usize as Shr<i32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i32) -> <usize as Shr<i32>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a u8> for usize`

[src]`type Output = <usize as Shr<u8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u8) -> <usize as Shr<u8>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a u32> for &'b usize`

[src]`type Output = <usize as Shr<u32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u32) -> <usize as Shr<u32>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<u128> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u128) -> usize`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a i64> for &'b usize`

[src]`type Output = <usize as Shr<i64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i64) -> <usize as Shr<i64>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a isize> for usize`

[src]`type Output = <usize as Shr<isize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a isize) -> <usize as Shr<isize>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a usize> for usize`

[src]`type Output = <usize as Shr<usize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a usize) -> <usize as Shr<usize>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<u128> for &'a usize`

[src]`type Output = <usize as Shr<u128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u128) -> <usize as Shr<u128>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a i64> for usize`

[src]`type Output = <usize as Shr<i64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i64) -> <usize as Shr<i64>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a isize> for &'b usize`

[src]`type Output = <usize as Shr<isize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a isize) -> <usize as Shr<isize>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a i16> for &'b usize`

[src]`type Output = <usize as Shr<i16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a i16) -> <usize as Shr<i16>>::Output`

[src]Performs the `>>`

operation.

`impl<'a, 'b> Shr<&'a u8> for &'b usize`

[src]`type Output = <usize as Shr<u8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u8) -> <usize as Shr<u8>>::Output`

[src]Performs the `>>`

operation.

`impl Shr<i32> for usize`

[src]`type Output = usize`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i32) -> usize`

[src]Performs the `>>`

operation.

`impl<'a> Shr<i32> for &'a usize`

[src]`type Output = <usize as Shr<i32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i32) -> <usize as Shr<i32>>::Output`

[src]Performs the `>>`

operation.

`impl<'a> Shr<&'a u16> for usize`

[src]`type Output = <usize as Shr<u16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &'a u16) -> <usize as Shr<u16>>::Output`

[src]Performs the `>>`

operation.

`impl Binary for usize`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter.

`impl Sum<usize> for usize`

[src]1.12.0

`fn sum<I>(iter: I) -> usize where`

Â Â Â Â I: Iterator<Item = usize>,Â

[src]Method which takes an iterator and generates `Self`

from the elements by "summing up" the items. Read more

`impl<'a> Sum<&'a usize> for usize`

[src]1.12.0

`fn sum<I>(iter: I) -> usize where`

Â Â Â Â I: Iterator<Item = &'a usize>,Â

[src]`Self`

from the elements by "summing up" the items. Read more

`impl<'a> BitXor<usize> for &'a usize`

[src]`type Output = <usize as BitXor<usize>>::Output`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: usize) -> <usize as BitXor<usize>>::Output`

[src]Performs the `^`

operation.

`impl<'a> BitXor<&'a usize> for usize`

[src]`type Output = <usize as BitXor<usize>>::Output`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: &'a usize) -> <usize as BitXor<usize>>::Output`

[src]Performs the `^`

operation.

`impl BitXor<usize> for usize`

[src]`type Output = usize`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: usize) -> usize`

[src]Performs the `^`

operation.

`impl<'a, 'b> BitXor<&'a usize> for &'b usize`

[src]`type Output = <usize as BitXor<usize>>::Output`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: &'a usize) -> <usize as BitXor<usize>>::Output`

[src]Performs the `^`

operation.

`impl Step for usize`

[src]`fn steps_between(start: &usize, end: &usize) -> Option<usize>`

[src]ðŸ”¬ This is a nightly-only experimental API. (step_trait #42168)likely to be replaced by finer-grained traits

Returns the number of steps between two step objects. The count is inclusive of `start`

and exclusive of `end`

. Read more

`fn add_usize(&self, n: usize) -> Option<usize>`

[src]ðŸ”¬ This is a nightly-only experimental API. (step_trait #42168)likely to be replaced by finer-grained traits

Add an usize, returning None on overflow

`fn replace_one(&mut self) -> usize`

[src]ðŸ”¬ This is a nightly-only experimental API. (step_trait #42168)likely to be replaced by finer-grained traits

Replaces this step with `1`

, returning itself

`fn replace_zero(&mut self) -> usize`

[src]Replaces this step with `0`

, returning itself

`fn add_one(&self) -> usize`

[src]Adds one to this step, returning the result

`fn sub_one(&self) -> usize`

[src]Subtracts one to this step, returning the result

`impl Debug for usize`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter. Read more

`impl Eq for usize`

[src]`impl PartialEq<usize> for usize`

[src]`fn eq(&self, other: &usize) -> bool`

[src]This method tests for `self`

and `other`

values to be equal, and is used by `==`

. Read more

`fn ne(&self, other: &usize) -> bool`

[src]This method tests for `!=`

.

`impl<'a> Not for &'a usize`

[src]`type Output = <usize as Not>::Output`

The resulting type after applying the `!`

operator.

`fn not(self) -> <usize as Not>::Output`

[src]Performs the unary `!`

operation.

`impl Not for usize`

[src]`type Output = usize`

The resulting type after applying the `!`

operator.

`fn not(self) -> usize`

[src]Performs the unary `!`

operation.

`impl From<u8> for usize`

[src]1.5.0

Converts `u8`

to `usize`

losslessly.

`impl From<u16> for usize`

[src]1.26.0

Converts `u16`

to `usize`

losslessly.

`impl From<bool> for usize`

[src]1.28.0

Converts a `bool`

to a `usize`

. The resulting value is `0`

for `false`

and `1`

for `true`

values.

assert_eq!(usize::from(true), 1); assert_eq!(usize::from(false), 0);

`impl Copy for usize`

[src]`impl Rem<usize> for usize`

[src]This operation satisfies `n % d == n - (n / d) * d`

. The result has the same sign as the left operand.

`type Output = usize`

The resulting type after applying the `%`

operator.

`fn rem(self, other: usize) -> usize`

[src]Performs the `%`

operation.

`impl<'a> Rem<usize> for &'a usize`

[src]`type Output = <usize as Rem<usize>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: usize) -> <usize as Rem<usize>>::Output`

[src]Performs the `%`

operation.

`impl<'a> Rem<&'a usize> for usize`

[src]`type Output = <usize as Rem<usize>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: &'a usize) -> <usize as Rem<usize>>::Output`

[src]Performs the `%`

operation.

`impl<'a, 'b> Rem<&'a usize> for &'b usize`

[src]`type Output = <usize as Rem<usize>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: &'a usize) -> <usize as Rem<usize>>::Output`

[src]Performs the `%`

operation.

`impl<'a> Mul<&'a usize> for usize`

[src]`type Output = <usize as Mul<usize>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: &'a usize) -> <usize as Mul<usize>>::Output`

[src]Performs the `*`

operation.

`impl<'a, 'b> Mul<&'a usize> for &'b usize`

[src]`type Output = <usize as Mul<usize>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: &'a usize) -> <usize as Mul<usize>>::Output`

[src]Performs the `*`

operation.

`impl<'a> Mul<usize> for &'a usize`

[src]`type Output = <usize as Mul<usize>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: usize) -> <usize as Mul<usize>>::Output`

[src]Performs the `*`

operation.

`impl Mul<usize> for usize`

[src]`type Output = usize`

The resulting type after applying the `*`

operator.

`fn mul(self, other: usize) -> usize`

[src]Performs the `*`

operation.

`impl UpperHex for usize`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter.

`impl Octal for usize`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter.

`impl<'a, 'b> Shl<&'a u16> for &'b usize`

[src]`type Output = <usize as Shl<u16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u16) -> <usize as Shl<u16>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a i64> for usize`

[src]`type Output = <usize as Shl<i64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i64) -> <usize as Shl<i64>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a u32> for usize`

[src]`type Output = <usize as Shl<u32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u32) -> <usize as Shl<u32>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<u8> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u8) -> usize`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a u128> for usize`

[src]`type Output = <usize as Shl<u128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u128) -> <usize as Shl<u128>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a i32> for usize`

[src]`type Output = <usize as Shl<i32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i32) -> <usize as Shl<i32>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<u32> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u32) -> usize`

[src]Performs the `<<`

operation.

`impl Shl<i32> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i32) -> usize`

[src]Performs the `<<`

operation.

`impl<'a> Shl<isize> for &'a usize`

[src]`type Output = <usize as Shl<isize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: isize) -> <usize as Shl<isize>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<u128> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u128) -> usize`

[src]Performs the `<<`

operation.

`impl Shl<u64> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u64) -> usize`

[src]Performs the `<<`

operation.

`impl<'a> Shl<i8> for &'a usize`

[src]`type Output = <usize as Shl<i8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i8) -> <usize as Shl<i8>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<u128> for &'a usize`

[src]`type Output = <usize as Shl<u128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u128) -> <usize as Shl<u128>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a u32> for &'b usize`

[src]`type Output = <usize as Shl<u32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u32) -> <usize as Shl<u32>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<u32> for &'a usize`

[src]`type Output = <usize as Shl<u32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u32) -> <usize as Shl<u32>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a i16> for usize`

[src]`type Output = <usize as Shl<i16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i16) -> <usize as Shl<i16>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a u64> for usize`

[src]`type Output = <usize as Shl<u64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u64) -> <usize as Shl<u64>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a u16> for usize`

[src]`type Output = <usize as Shl<u16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u16) -> <usize as Shl<u16>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<usize> for &'a usize`

[src]`type Output = <usize as Shl<usize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: usize) -> <usize as Shl<usize>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<i64> for &'a usize`

[src]`type Output = <usize as Shl<i64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i64) -> <usize as Shl<i64>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<i16> for &'a usize`

[src]`type Output = <usize as Shl<i16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i16) -> <usize as Shl<i16>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a i8> for usize`

[src]`type Output = <usize as Shl<i8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i8) -> <usize as Shl<i8>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a usize> for usize`

[src]`type Output = <usize as Shl<usize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a usize) -> <usize as Shl<usize>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a i128> for &'b usize`

[src]`type Output = <usize as Shl<i128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i128) -> <usize as Shl<i128>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<u16> for &'a usize`

[src]`type Output = <usize as Shl<u16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u16) -> <usize as Shl<u16>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a u8> for &'b usize`

[src]`type Output = <usize as Shl<u8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u8) -> <usize as Shl<u8>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a isize> for usize`

[src]`type Output = <usize as Shl<isize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a isize) -> <usize as Shl<isize>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a i32> for &'b usize`

[src]`type Output = <usize as Shl<i32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i32) -> <usize as Shl<i32>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<u16> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u16) -> usize`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a isize> for &'b usize`

[src]`type Output = <usize as Shl<isize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a isize) -> <usize as Shl<isize>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a u128> for &'b usize`

[src]`type Output = <usize as Shl<u128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u128) -> <usize as Shl<u128>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<i8> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i8) -> usize`

[src]Performs the `<<`

operation.

`impl<'a> Shl<u8> for &'a usize`

[src]`type Output = <usize as Shl<u8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u8) -> <usize as Shl<u8>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a usize> for &'b usize`

[src]`type Output = <usize as Shl<usize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a usize) -> <usize as Shl<usize>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<usize> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: usize) -> usize`

[src]Performs the `<<`

operation.

`impl<'a> Shl<i32> for &'a usize`

[src]`type Output = <usize as Shl<i32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i32) -> <usize as Shl<i32>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a i16> for &'b usize`

[src]`type Output = <usize as Shl<i16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i16) -> <usize as Shl<i16>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<i128> for &'a usize`

[src]`type Output = <usize as Shl<i128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i128) -> <usize as Shl<i128>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<i64> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i64) -> usize`

[src]Performs the `<<`

operation.

`impl Shl<i128> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i128) -> usize`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a i64> for &'b usize`

[src]`type Output = <usize as Shl<i64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i64) -> <usize as Shl<i64>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a i128> for usize`

[src]`type Output = <usize as Shl<i128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i128) -> <usize as Shl<i128>>::Output`

[src]Performs the `<<`

operation.

`impl Shl<isize> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: isize) -> usize`

[src]Performs the `<<`

operation.

`impl Shl<i16> for usize`

[src]`type Output = usize`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i16) -> usize`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a u64> for &'b usize`

[src]`type Output = <usize as Shl<u64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u64) -> <usize as Shl<u64>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<&'a u8> for usize`

[src]`type Output = <usize as Shl<u8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a u8) -> <usize as Shl<u8>>::Output`

[src]Performs the `<<`

operation.

`impl<'a> Shl<u64> for &'a usize`

[src]`type Output = <usize as Shl<u64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u64) -> <usize as Shl<u64>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> Shl<&'a i8> for &'b usize`

[src]`type Output = <usize as Shl<i8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &'a i8) -> <usize as Shl<i8>>::Output`

[src]Performs the `<<`

operation.

`impl<'a, 'b> BitAnd<&'a usize> for &'b usize`

[src]`type Output = <usize as BitAnd<usize>>::Output`

The resulting type after applying the `&`

operator.

`fn bitand(self, other: &'a usize) -> <usize as BitAnd<usize>>::Output`

[src]Performs the `&`

operation.

`impl BitAnd<usize> for usize`

[src]`type Output = usize`

The resulting type after applying the `&`

operator.

`fn bitand(self, rhs: usize) -> usize`

[src]Performs the `&`

operation.

`impl<'a> BitAnd<&'a usize> for usize`

[src]`type Output = <usize as BitAnd<usize>>::Output`

The resulting type after applying the `&`

operator.

`fn bitand(self, other: &'a usize) -> <usize as BitAnd<usize>>::Output`

[src]Performs the `&`

operation.

`impl<'a> BitAnd<usize> for &'a usize`

[src]`type Output = <usize as BitAnd<usize>>::Output`

The resulting type after applying the `&`

operator.

`fn bitand(self, other: usize) -> <usize as BitAnd<usize>>::Output`

[src]Performs the `&`

operation.

`impl Default for usize`

[src]`impl<'a> ShlAssign<&'a u8> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a u8)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<i16> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: i16)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a i128> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a i128)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a isize> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a isize)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<usize> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: usize)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<i64> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: i64)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a u16> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a u16)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<isize> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: isize)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a u64> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a u64)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a u128> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a u128)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<u128> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: u128)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<u8> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: u8)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a i16> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a i16)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<i128> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: i128)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a i8> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a i8)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<u16> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: u16)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<i32> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: i32)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a usize> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a usize)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a i32> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a i32)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a u32> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a u32)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<u32> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: u32)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<u64> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: u64)`

[src]Performs the `<<=`

operation.

`impl ShlAssign<i8> for usize`

[src]1.8.0

`fn shl_assign(&mut self, other: i8)`

[src]Performs the `<<=`

operation.

`impl<'a> ShlAssign<&'a i64> for usize`

[src]1.22.0

`fn shl_assign(&mut self, other: &'a i64)`

[src]Performs the `<<=`

operation.

`impl BitXorAssign<usize> for usize`

[src]1.8.0

`fn bitxor_assign(&mut self, other: usize)`

[src]Performs the `^=`

operation.

`impl<'a> BitXorAssign<&'a usize> for usize`

[src]1.22.0

`fn bitxor_assign(&mut self, other: &'a usize)`

[src]Performs the `^=`

operation.

`impl<'a> Div<usize> for &'a usize`

[src]`type Output = <usize as Div<usize>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: usize) -> <usize as Div<usize>>::Output`

[src]Performs the `/`

operation.

`impl<'a, 'b> Div<&'a usize> for &'b usize`

[src]`type Output = <usize as Div<usize>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: &'a usize) -> <usize as Div<usize>>::Output`

[src]Performs the `/`

operation.

`impl Div<usize> for usize`

[src]This operation rounds towards zero, truncating any fractional part of the exact result.

`type Output = usize`

The resulting type after applying the `/`

operator.

`fn div(self, other: usize) -> usize`

[src]Performs the `/`

operation.

`impl<'a> Div<&'a usize> for usize`

[src]`type Output = <usize as Div<usize>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: &'a usize) -> <usize as Div<usize>>::Output`

[src]Performs the `/`

operation.

`impl<'a> BitOrAssign<&'a usize> for usize`

[src]1.22.0

`fn bitor_assign(&mut self, other: &'a usize)`

[src]Performs the `|=`

operation.

`impl BitOrAssign<usize> for usize`

[src]1.8.0

`fn bitor_assign(&mut self, other: usize)`

[src]Performs the `|=`

operation.

`impl BitAndAssign<usize> for usize`

[src]1.8.0

`fn bitand_assign(&mut self, other: usize)`

[src]Performs the `&=`

operation.

`impl<'a> BitAndAssign<&'a usize> for usize`

[src]1.22.0

`fn bitand_assign(&mut self, other: &'a usize)`

[src]Performs the `&=`

operation.

`impl LowerHex for usize`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter.

`impl<'a> Add<&'a usize> for usize`

[src]`type Output = <usize as Add<usize>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: &'a usize) -> <usize as Add<usize>>::Output`

[src]Performs the `+`

operation.

`impl<'a> Add<usize> for &'a usize`

[src]`type Output = <usize as Add<usize>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: usize) -> <usize as Add<usize>>::Output`

[src]Performs the `+`

operation.

`impl Add<usize> for usize`

[src]`type Output = usize`

The resulting type after applying the `+`

operator.

`fn add(self, other: usize) -> usize`

[src]Performs the `+`

operation.

`impl<'a, 'b> Add<&'a usize> for &'b usize`

[src]`type Output = <usize as Add<usize>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: &'a usize) -> <usize as Add<usize>>::Output`

[src]Performs the `+`

operation.

`impl Product<usize> for usize`

[src]1.12.0

`fn product<I>(iter: I) -> usize where`

Â Â Â Â I: Iterator<Item = usize>,Â

[src]Method which takes an iterator and generates `Self`

from the elements by multiplying the items. Read more

`impl<'a> Product<&'a usize> for usize`

[src]1.12.0

`fn product<I>(iter: I) -> usize where`

Â Â Â Â I: Iterator<Item = &'a usize>,Â

[src]`Self`

from the elements by multiplying the items. Read more

`impl Display for usize`

[src]`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]Formats the value using the given formatter. Read more

`impl<'a, 'b> BitOr<&'a usize> for &'b usize`

[src]`type Output = <usize as BitOr<usize>>::Output`

The resulting type after applying the `|`

operator.

`fn bitor(self, other: &'a usize) -> <usize as BitOr<usize>>::Output`

[src]Performs the `|`

operation.

`impl<'a> BitOr<usize> for &'a usize`

[src]`type Output = <usize as BitOr<usize>>::Output`

The resulting type after applying the `|`

operator.

`fn bitor(self, other: usize) -> <usize as BitOr<usize>>::Output`

[src]Performs the `|`

operation.

`impl BitOr<usize> for usize`

[src]`type Output = usize`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: usize) -> usize`

[src]Performs the `|`

operation.

`impl<'a> BitOr<&'a usize> for usize`

[src]`impl<T, U> TryFrom for T where`

Â Â Â Â T: From<U>,Â

[src]`type Error = !`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl<T> From for T`

[src]`impl<T, U> TryInto for T where`

Â Â Â Â U: TryFrom<T>,Â

[src]`type Error = <U as TryFrom<T>>::Error`

ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>`

[src]ðŸ”¬ This is a nightly-only experimental API. (try_from #33417)

Performs the conversion.

`impl<T, U> Into for T where`

Â Â Â Â U: From<T>,Â

[src]`impl<T> Borrow for T where`

Â Â Â Â T: ?Sized,Â

[src]`fn borrow(&self) -> &T`

[src]Immutably borrows from an owned value. Read more

`impl<T> BorrowMut for T where`

Â Â Â Â T: ?Sized,Â

[src]`fn borrow_mut(&mut self) -> &mut T`

[src]Mutably borrows from an owned value. Read more

`impl<T> Any for T where`

Â Â Â Â T: 'static + ?Sized,Â

[src]`fn get_type_id(&self) -> TypeId`

[src]ðŸ”¬ This is a nightly-only experimental API. (get_type_id #27745)this method will likely be replaced by an associated static

Gets the `TypeId`

of `self`

. Read more

`impl<T> ToOwned for T where`

Â Â Â Â T: Clone,Â

[src]`type Owned = T`

`fn to_owned(&self) -> T`

[src]Creates owned data from borrowed data, usually by cloning. Read more

`fn clone_into(&self, target: &mut T)`

[src]ðŸ”¬ This is a nightly-only experimental API. (toowned_clone_into #41263)recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

`impl<T> ToString for T where`

Â Â Â Â T: Display + ?Sized,Â

[src]
Â© 2010 The Rust Project Developers

Licensed under the Apache License, Version 2.0 or the MIT license, at your option.

https://doc.rust-lang.org/std/primitive.usize.html