Note
Click here to download the full example code
Demonstrate how model complexity influences both prediction accuracy and computational performance.
The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification).
For each class of models we make the model complexity vary through the choice of relevant model parameters and measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss).
Out:
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.25, learning_rate='optimal', loss='modified_huber', max_iter=None, n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True, tol=0.001, validation_fraction=0.1, verbose=0, warm_start=False) Complexity: 4495 | Hamming Loss (Misclassification Ratio): 0.2536 | Pred. Time: 0.024342s Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.5, learning_rate='optimal', loss='modified_huber', max_iter=None, n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True, tol=0.001, validation_fraction=0.1, verbose=0, warm_start=False) Complexity: 1644 | Hamming Loss (Misclassification Ratio): 0.3032 | Pred. Time: 0.018662s Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.75, learning_rate='optimal', loss='modified_huber', max_iter=None, n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True, tol=0.001, validation_fraction=0.1, verbose=0, warm_start=False) Complexity: 866 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.014866s Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.9, learning_rate='optimal', loss='modified_huber', max_iter=None, n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True, tol=0.001, validation_fraction=0.1, verbose=0, warm_start=False) Complexity: 647 | Hamming Loss (Misclassification Ratio): 0.3302 | Pred. Time: 0.012115s Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05, kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001, verbose=False) Complexity: 69 | MSE: 31.8139 | Pred. Time: 0.000381s Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05, kernel='rbf', max_iter=-1, nu=0.25, shrinking=True, tol=0.001, verbose=False) Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000661s Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05, kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001, verbose=False) Complexity: 244 | MSE: 22.3375 | Pred. Time: 0.001123s Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05, kernel='rbf', max_iter=-1, nu=0.75, shrinking=True, tol=0.001, verbose=False) Complexity: 351 | MSE: 21.3688 | Pred. Time: 0.001570s Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05, kernel='rbf', max_iter=-1, nu=0.9, shrinking=True, tol=0.001, verbose=False) Complexity: 404 | MSE: 21.1033 | Pred. Time: 0.001797s Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None, learning_rate=0.1, loss='ls', max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_iter_no_change=None, presort='auto', random_state=None, subsample=1.0, tol=0.0001, validation_fraction=0.1, verbose=0, warm_start=False) Complexity: 10 | MSE: 29.0148 | Pred. Time: 0.000147s Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None, learning_rate=0.1, loss='ls', max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=50, n_iter_no_change=None, presort='auto', random_state=None, subsample=1.0, tol=0.0001, validation_fraction=0.1, verbose=0, warm_start=False) Complexity: 50 | MSE: 8.7631 | Pred. Time: 0.000229s Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None, learning_rate=0.1, loss='ls', max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_iter_no_change=None, presort='auto', random_state=None, subsample=1.0, tol=0.0001, validation_fraction=0.1, verbose=0, warm_start=False) Complexity: 100 | MSE: 7.4527 | Pred. Time: 0.000312s Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None, learning_rate=0.1, loss='ls', max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=200, n_iter_no_change=None, presort='auto', random_state=None, subsample=1.0, tol=0.0001, validation_fraction=0.1, verbose=0, warm_start=False) Complexity: 200 | MSE: 6.7607 | Pred. Time: 0.000473s Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None, learning_rate=0.1, loss='ls', max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=500, n_iter_no_change=None, presort='auto', random_state=None, subsample=1.0, tol=0.0001, validation_fraction=0.1, verbose=0, warm_start=False) Complexity: 500 | MSE: 7.3029 | Pred. Time: 0.000981s
print(__doc__) # Author: Eustache Diemert <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.parasite_axes import host_subplot from mpl_toolkits.axisartist.axislines import Axes from scipy.sparse.csr import csr_matrix from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.svm.classes import NuSVR from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.metrics import hamming_loss # ############################################################################# # Routines # Initialize random generator np.random.seed(0) def generate_data(case, sparse=False): """Generate regression/classification data.""" bunch = None if case == 'regression': bunch = datasets.load_boston() elif case == 'classification': bunch = datasets.fetch_20newsgroups_vectorized(subset='all') X, y = shuffle(bunch.data, bunch.target) offset = int(X.shape[0] * 0.8) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] if sparse: X_train = csr_matrix(X_train) X_test = csr_matrix(X_test) else: X_train = np.array(X_train) X_test = np.array(X_test) y_test = np.array(y_test) y_train = np.array(y_train) data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test} return data def benchmark_influence(conf): """ Benchmark influence of :changing_param: on both MSE and latency. """ prediction_times = [] prediction_powers = [] complexities = [] for param_value in conf['changing_param_values']: conf['tuned_params'][conf['changing_param']] = param_value estimator = conf['estimator'](**conf['tuned_params']) print("Benchmarking %s" % estimator) estimator.fit(conf['data']['X_train'], conf['data']['y_train']) conf['postfit_hook'](estimator) complexity = conf['complexity_computer'](estimator) complexities.append(complexity) start_time = time.time() for _ in range(conf['n_samples']): y_pred = estimator.predict(conf['data']['X_test']) elapsed_time = (time.time() - start_time) / float(conf['n_samples']) prediction_times.append(elapsed_time) pred_score = conf['prediction_performance_computer']( conf['data']['y_test'], y_pred) prediction_powers.append(pred_score) print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % ( complexity, conf['prediction_performance_label'], pred_score, elapsed_time)) return prediction_powers, prediction_times, complexities def plot_influence(conf, mse_values, prediction_times, complexities): """ Plot influence of model complexity on both accuracy and latency. """ plt.figure(figsize=(12, 6)) host = host_subplot(111, axes_class=Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() host.set_xlabel('Model Complexity (%s)' % conf['complexity_label']) y1_label = conf['prediction_performance_label'] y2_label = "Time (s)" host.set_ylabel(y1_label) par1.set_ylabel(y2_label) p1, = host.plot(complexities, mse_values, 'b-', label="prediction error") p2, = par1.plot(complexities, prediction_times, 'r-', label="latency") host.legend(loc='upper right') host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__) plt.show() def _count_nonzero_coefficients(estimator): a = estimator.coef_.toarray() return np.count_nonzero(a) # ############################################################################# # Main code regression_data = generate_data('regression') classification_data = generate_data('classification', sparse=True) configurations = [ {'estimator': SGDClassifier, 'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss': 'modified_huber', 'fit_intercept': True, 'tol': 1e-3}, 'changing_param': 'l1_ratio', 'changing_param_values': [0.25, 0.5, 0.75, 0.9], 'complexity_label': 'non_zero coefficients', 'complexity_computer': _count_nonzero_coefficients, 'prediction_performance_computer': hamming_loss, 'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)', 'postfit_hook': lambda x: x.sparsify(), 'data': classification_data, 'n_samples': 30}, {'estimator': NuSVR, 'tuned_params': {'C': 1e3, 'gamma': 2 ** -15}, 'changing_param': 'nu', 'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9], 'complexity_label': 'n_support_vectors', 'complexity_computer': lambda x: len(x.support_vectors_), 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, {'estimator': GradientBoostingRegressor, 'tuned_params': {'loss': 'ls'}, 'changing_param': 'n_estimators', 'changing_param_values': [10, 50, 100, 200, 500], 'complexity_label': 'n_trees', 'complexity_computer': lambda x: x.n_estimators, 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, ] for conf in configurations: prediction_performances, prediction_times, complexities = \ benchmark_influence(conf) plot_influence(conf, prediction_performances, prediction_times, complexities)
Total running time of the script: ( 0 minutes 42.193 seconds)
Gallery generated by Sphinx-Gallery
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/applications/plot_model_complexity_influence.html