W3cubDocs

/scikit-learn

Biclustering documents with the Spectral Co-clustering algorithm

This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The ‘comp.os.ms-windows.misc’ category is excluded because it contains many posts containing nothing but data.

The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon’s Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents.

For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster.

For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans.

Out:

Vectorizing...
Coclustering...
Done in 5.92s. V-measure: 0.4435
MiniBatchKMeans...
Done in 16.90s. V-measure: 0.3344

Best biclusters:
----------------
bicluster 0 : 1957 documents, 4363 words
categories   : 23% talk.politics.guns, 18% talk.politics.misc, 17% sci.med
words        : gun, guns, geb, banks, gordon, clinton, pitt, cdt, surrender, veal

bicluster 1 : 1263 documents, 3551 words
categories   : 27% soc.religion.christian, 25% talk.politics.mideast, 24% alt.atheism
words        : god, jesus, christians, sin, objective, kent, belief, christ, faith, moral

bicluster 2 : 2212 documents, 2774 words
categories   : 18% comp.sys.mac.hardware, 17% comp.sys.ibm.pc.hardware, 15% comp.graphics
words        : voltage, board, dsp, stereo, receiver, packages, shipping, circuit, package, compression

bicluster 3 : 1774 documents, 2629 words
categories   : 27% rec.motorcycles, 23% rec.autos, 13% misc.forsale
words        : bike, car, dod, engine, motorcycle, ride, honda, bikes, helmet, bmw

bicluster 4 : 200 documents, 1167 words
categories   : 81% talk.politics.mideast, 10% alt.atheism, 8% soc.religion.christian
words        : turkish, armenia, armenian, armenians, turks, petch, sera, zuma, argic, gvg47
from __future__ import print_function

from collections import defaultdict
import operator
from time import time

import numpy as np

from sklearn.cluster.bicluster import SpectralCoclustering
from sklearn.cluster import MiniBatchKMeans
from sklearn.externals.six import iteritems
from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.cluster import v_measure_score

print(__doc__)


def number_normalizer(tokens):
    """ Map all numeric tokens to a placeholder.

    For many applications, tokens that begin with a number are not directly
    useful, but the fact that such a token exists can be relevant.  By applying
    this form of dimensionality reduction, some methods may perform better.
    """
    return ("#NUMBER" if token[0].isdigit() else token for token in tokens)


class NumberNormalizingVectorizer(TfidfVectorizer):
    def build_tokenizer(self):
        tokenize = super(NumberNormalizingVectorizer, self).build_tokenizer()
        return lambda doc: list(number_normalizer(tokenize(doc)))


# exclude 'comp.os.ms-windows.misc'
categories = ['alt.atheism', 'comp.graphics',
              'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',
              'comp.windows.x', 'misc.forsale', 'rec.autos',
              'rec.motorcycles', 'rec.sport.baseball',
              'rec.sport.hockey', 'sci.crypt', 'sci.electronics',
              'sci.med', 'sci.space', 'soc.religion.christian',
              'talk.politics.guns', 'talk.politics.mideast',
              'talk.politics.misc', 'talk.religion.misc']
newsgroups = fetch_20newsgroups(categories=categories)
y_true = newsgroups.target

vectorizer = NumberNormalizingVectorizer(stop_words='english', min_df=5)
cocluster = SpectralCoclustering(n_clusters=len(categories),
                                 svd_method='arpack', random_state=0)
kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000,
                         random_state=0)

print("Vectorizing...")
X = vectorizer.fit_transform(newsgroups.data)

print("Coclustering...")
start_time = time()
cocluster.fit(X)
y_cocluster = cocluster.row_labels_
print("Done in {:.2f}s. V-measure: {:.4f}".format(
    time() - start_time,
    v_measure_score(y_cocluster, y_true)))

print("MiniBatchKMeans...")
start_time = time()
y_kmeans = kmeans.fit_predict(X)
print("Done in {:.2f}s. V-measure: {:.4f}".format(
    time() - start_time,
    v_measure_score(y_kmeans, y_true)))

feature_names = vectorizer.get_feature_names()
document_names = list(newsgroups.target_names[i] for i in newsgroups.target)


def bicluster_ncut(i):
    rows, cols = cocluster.get_indices(i)
    if not (np.any(rows) and np.any(cols)):
        import sys
        return sys.float_info.max
    row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0]
    col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0]
    # Note: the following is identical to X[rows[:, np.newaxis],
    # cols].sum() but much faster in scipy <= 0.16
    weight = X[rows][:, cols].sum()
    cut = (X[row_complement][:, cols].sum() +
           X[rows][:, col_complement].sum())
    return cut / weight


def most_common(d):
    """Items of a defaultdict(int) with the highest values.

    Like Counter.most_common in Python >=2.7.
    """
    return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True)


bicluster_ncuts = list(bicluster_ncut(i)
                       for i in range(len(newsgroups.target_names)))
best_idx = np.argsort(bicluster_ncuts)[:5]

print()
print("Best biclusters:")
print("----------------")
for idx, cluster in enumerate(best_idx):
    n_rows, n_cols = cocluster.get_shape(cluster)
    cluster_docs, cluster_words = cocluster.get_indices(cluster)
    if not len(cluster_docs) or not len(cluster_words):
        continue

    # categories
    counter = defaultdict(int)
    for i in cluster_docs:
        counter[document_names[i]] += 1
    cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name)
                           for name, c in most_common(counter)[:3])

    # words
    out_of_cluster_docs = cocluster.row_labels_ != cluster
    out_of_cluster_docs = np.where(out_of_cluster_docs)[0]
    word_col = X[:, cluster_words]
    word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) -
                           word_col[out_of_cluster_docs, :].sum(axis=0))
    word_scores = word_scores.ravel()
    important_words = list(feature_names[cluster_words[i]]
                           for i in word_scores.argsort()[:-11:-1])

    print("bicluster {} : {} documents, {} words".format(
        idx, n_rows, n_cols))
    print("categories   : {}".format(cat_string))
    print("words        : {}\n".format(', '.join(important_words)))

Total running time of the script: ( 0 minutes 26.921 seconds)

Gallery generated by Sphinx-Gallery

© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/bicluster/plot_bicluster_newsgroups.html