Note
Click here to download the full example code
In order to test if a classification score is significative a technique in repeating the classification procedure after randomizing, permuting, the labels. The p-value is then given by the percentage of runs for which the score obtained is greater than the classification score obtained in the first place.
Out:
Classification score 0.5133333333333333 (pvalue : 0.009900990099009901)
# Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import permutation_test_score from sklearn import datasets # ############################################################################# # Loading a dataset iris = datasets.load_iris() X = iris.data y = iris.target n_classes = np.unique(y).size # Some noisy data not correlated random = np.random.RandomState(seed=0) E = random.normal(size=(len(X), 2200)) # Add noisy data to the informative features for make the task harder X = np.c_[X, E] svm = SVC(kernel='linear') cv = StratifiedKFold(2) score, permutation_scores, pvalue = permutation_test_score( svm, X, y, scoring="accuracy", cv=cv, n_permutations=100, n_jobs=1) print("Classification score %s (pvalue : %s)" % (score, pvalue)) # ############################################################################# # View histogram of permutation scores plt.hist(permutation_scores, 20, label='Permutation scores', edgecolor='black') ylim = plt.ylim() # BUG: vlines(..., linestyle='--') fails on older versions of matplotlib # plt.vlines(score, ylim[0], ylim[1], linestyle='--', # color='g', linewidth=3, label='Classification Score' # ' (pvalue %s)' % pvalue) # plt.vlines(1.0 / n_classes, ylim[0], ylim[1], linestyle='--', # color='k', linewidth=3, label='Luck') plt.plot(2 * [score], ylim, '--g', linewidth=3, label='Classification Score' ' (pvalue %s)' % pvalue) plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck') plt.ylim(ylim) plt.legend() plt.xlabel('Score') plt.show()
Total running time of the script: ( 0 minutes 12.425 seconds)
Gallery generated by Sphinx-Gallery
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/feature_selection/plot_permutation_test_for_classification.html