Note
Click here to download the full example code
Demonstrates an active learning technique to learn handwritten digits using label propagation.
We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. Note you can increase this to label more than 30 by changing max_iterations. Labeling more than 30 can be useful to get a sense for the speed of convergence of this active learning technique.
A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels.
Out:
Iteration 0 ______________________________________________________________________
Label Spreading model: 10 labeled & 320 unlabeled (330 total)
              precision    recall  f1-score   support
           0       0.00      0.00      0.00        24
           1       0.51      0.86      0.64        29
           2       0.83      0.97      0.90        31
           3       0.00      0.00      0.00        28
           4       0.00      0.00      0.00        27
           5       0.85      0.49      0.62        35
           6       0.84      0.95      0.89        40
           7       0.70      0.92      0.80        36
           8       0.57      0.76      0.65        33
           9       0.41      0.86      0.55        37
   micro avg       0.62      0.62      0.62       320
   macro avg       0.47      0.58      0.50       320
weighted avg       0.51      0.62      0.54       320
Confusion matrix
[[25  3  0  0  0  0  1]
 [ 1 30  0  0  0  0  0]
 [ 0  0 17  7  0  1 10]
 [ 2  0  0 38  0  0  0]
 [ 0  3  0  0 33  0  0]
 [ 8  0  0  0  0 25  0]
 [ 0  0  3  0  0  2 32]]
Iteration 1 ______________________________________________________________________
Label Spreading model: 15 labeled & 315 unlabeled (330 total)
              precision    recall  f1-score   support
           0       0.00      0.00      0.00        24
           1       0.51      0.75      0.61        28
           2       0.91      0.97      0.94        31
           3       0.00      0.00      0.00        28
           4       0.00      0.00      0.00        27
           5       0.84      0.97      0.90        33
           6       1.00      0.95      0.97        40
           7       0.75      0.92      0.83        36
           8       0.46      0.81      0.59        31
           9       0.43      0.78      0.56        37
   micro avg       0.66      0.66      0.66       315
   macro avg       0.49      0.61      0.54       315
weighted avg       0.53      0.66      0.58       315
Confusion matrix
[[21  0  0  0  0  6  1]
 [ 1 30  0  0  0  0  0]
 [ 0  0 32  0  0  0  1]
 [ 2  0  0 38  0  0  0]
 [ 0  3  0  0 33  0  0]
 [ 6  0  0  0  0 25  0]
 [ 0  0  6  0  0  2 29]]
Iteration 2 ______________________________________________________________________
Label Spreading model: 20 labeled & 310 unlabeled (330 total)
              precision    recall  f1-score   support
           0       1.00      1.00      1.00        22
           1       0.67      0.71      0.69        28
           2       0.94      0.97      0.95        31
           3       0.00      0.00      0.00        28
           4       0.85      0.92      0.88        24
           5       0.89      0.97      0.93        33
           6       1.00      0.95      0.97        40
           7       1.00      0.92      0.96        36
           8       0.50      0.81      0.62        31
           9       0.67      0.78      0.72        37
   micro avg       0.81      0.81      0.81       310
   macro avg       0.75      0.80      0.77       310
weighted avg       0.76      0.81      0.78       310
Confusion matrix
[[22  0  0  0  0  0  0  0  0]
 [ 0 20  0  1  0  0  0  6  1]
 [ 0  1 30  0  0  0  0  0  0]
 [ 0  1  0 22  0  0  0  1  0]
 [ 0  0  0  0 32  0  0  0  1]
 [ 0  2  0  0  0 38  0  0  0]
 [ 0  0  2  1  0  0 33  0  0]
 [ 0  6  0  0  0  0  0 25  0]
 [ 0  0  0  2  4  0  0  2 29]]
Iteration 3 ______________________________________________________________________
Label Spreading model: 25 labeled & 305 unlabeled (330 total)
              precision    recall  f1-score   support
           0       1.00      1.00      1.00        22
           1       0.68      0.85      0.75        27
           2       1.00      0.90      0.95        31
           3       1.00      0.77      0.87        26
           4       1.00      0.92      0.96        24
           5       0.89      0.97      0.93        33
           6       1.00      0.97      0.99        39
           7       0.95      1.00      0.97        35
           8       0.66      0.81      0.72        31
           9       0.97      0.78      0.87        37
   micro avg       0.90      0.90      0.90       305
   macro avg       0.91      0.90      0.90       305
weighted avg       0.91      0.90      0.90       305
Confusion matrix
[[22  0  0  0  0  0  0  0  0  0]
 [ 0 23  0  0  0  0  0  0  4  0]
 [ 0  1 28  0  0  0  0  2  0  0]
 [ 0  0  0 20  0  0  0  0  6  0]
 [ 0  1  0  0 22  0  0  0  1  0]
 [ 0  0  0  0  0 32  0  0  0  1]
 [ 0  1  0  0  0  0 38  0  0  0]
 [ 0  0  0  0  0  0  0 35  0  0]
 [ 0  6  0  0  0  0  0  0 25  0]
 [ 0  2  0  0  0  4  0  0  2 29]]
Iteration 4 ______________________________________________________________________
Label Spreading model: 30 labeled & 300 unlabeled (330 total)
              precision    recall  f1-score   support
           0       1.00      1.00      1.00        22
           1       0.68      0.85      0.75        27
           2       1.00      0.87      0.93        31
           3       0.92      1.00      0.96        23
           4       1.00      0.92      0.96        24
           5       0.97      0.94      0.95        33
           6       1.00      0.97      0.99        39
           7       0.95      1.00      0.97        35
           8       0.81      0.81      0.81        31
           9       0.94      0.86      0.90        35
   micro avg       0.92      0.92      0.92       300
   macro avg       0.93      0.92      0.92       300
weighted avg       0.93      0.92      0.92       300
Confusion matrix
[[22  0  0  0  0  0  0  0  0  0]
 [ 0 23  0  0  0  0  0  0  4  0]
 [ 0  1 27  1  0  0  0  2  0  0]
 [ 0  0  0 23  0  0  0  0  0  0]
 [ 0  1  0  0 22  0  0  0  1  0]
 [ 0  0  0  0  0 31  0  0  0  2]
 [ 0  1  0  0  0  0 38  0  0  0]
 [ 0  0  0  0  0  0  0 35  0  0]
 [ 0  6  0  0  0  0  0  0 25  0]
 [ 0  2  0  1  0  1  0  0  1 30]]
  print(__doc__) # Authors: Clay Woolam <[email protected]> # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 max_iterations = 5 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(max_iterations): if len(unlabeled_indices) == 0: print("No unlabeled items left to label.") break y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print("Iteration %i %s" % (i, 70 * "_")) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select up to 5 digit examples that the classifier is most uncertain about uncertainty_index = np.argsort(pred_entropies)[::-1] uncertainty_index = uncertainty_index[ np.in1d(uncertainty_index, unlabeled_indices)][:5] # keep track of indices that we get labels for delete_indices = np.array([]) # for more than 5 iterations, visualize the gain only on the first 5 if i < 5: f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] # for more than 5 iterations, visualize the gain only on the first 5 if i < 5: sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r, interpolation='none') sub.set_title("predict: %i\ntrue: %i" % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += len(uncertainty_index) f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.", y=1.15) plt.subplots_adjust(left=0.2, bottom=0.03, right=0.9, top=0.9, wspace=0.2, hspace=0.85) plt.show()
Total running time of the script: ( 0 minutes 0.992 seconds)
Gallery generated by Sphinx-Gallery
    © 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
    http://scikit-learn.org/stable/auto_examples/semi_supervised/plot_label_propagation_digits_active_learning.html