class sklearn.covariance.LedoitWolf(store_precision=True, assume_centered=False, block_size=1000)
[source]
LedoitWolf Estimator
Ledoit-Wolf is a particular form of shrinkage, where the shrinkage coefficient is computed using O. Ledoit and M. Wolf’s formula as described in “A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Ledoit and Wolf, Journal of Multivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.
Read more in the User Guide.
Parameters: |
|
---|---|
Attributes: |
|
The regularised covariance is:
(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features and shrinkage is given by the Ledoit and Wolf formula (see References)
“A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Ledoit and Wolf, Journal of Multivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.
error_norm (comp_cov[, norm, scaling, squared]) | Computes the Mean Squared Error between two covariance estimators. |
fit (X[, y]) | Fits the Ledoit-Wolf shrunk covariance model according to the given training data and parameters. |
get_params ([deep]) | Get parameters for this estimator. |
get_precision () | Getter for the precision matrix. |
mahalanobis (X) | Computes the squared Mahalanobis distances of given observations. |
score (X_test[, y]) | Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its covariance matrix. |
set_params (**params) | Set the parameters of this estimator. |
__init__(store_precision=True, assume_centered=False, block_size=1000)
[source]
error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
[source]
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius norm).
Parameters: |
|
---|---|
Returns: |
|
fit(X, y=None)
[source]
Fits the Ledoit-Wolf shrunk covariance model according to the given training data and parameters.
Parameters: |
|
---|---|
Returns: |
|
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
|
---|---|
Returns: |
|
get_precision()
[source]
Getter for the precision matrix.
Returns: |
|
---|
mahalanobis(X)
[source]
Computes the squared Mahalanobis distances of given observations.
Parameters: |
|
---|---|
Returns: |
|
score(X_test, y=None)
[source]
Computes the log-likelihood of a Gaussian data set with self.covariance_
as an estimator of its covariance matrix.
Parameters: |
|
---|---|
Returns: |
|
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: |
|
---|
sklearn.covariance.LedoitWolf
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html