class sklearn.cross_decomposition.CCA(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)
[source]
CCA Canonical Correlation Analysis.
CCA inherits from PLS with mode=”B” and deflation_mode=”canonical”.
Read more in the User Guide.
Parameters: |
|
---|---|
Attributes: |
|
See also
For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that |u| = |v| = 1
Note that it maximizes only the correlations between the scores.
The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.
The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score.
Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.
In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.
>>> from sklearn.cross_decomposition import CCA >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> cca = CCA(n_components=1) >>> cca.fit(X, Y) ... CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06) >>> X_c, Y_c = cca.transform(X, Y)
fit (X, Y) | Fit model to data. |
fit_transform (X[, y]) | Learn and apply the dimension reduction on the train data. |
get_params ([deep]) | Get parameters for this estimator. |
predict (X[, copy]) | Apply the dimension reduction learned on the train data. |
score (X, y[, sample_weight]) | Returns the coefficient of determination R^2 of the prediction. |
set_params (**params) | Set the parameters of this estimator. |
transform (X[, Y, copy]) | Apply the dimension reduction learned on the train data. |
__init__(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)
[source]
fit(X, Y)
[source]
Fit model to data.
Parameters: |
|
---|
fit_transform(X, y=None)
[source]
Learn and apply the dimension reduction on the train data.
Parameters: |
|
---|---|
Returns: |
|
get_params(deep=True)
[source]
Get parameters for this estimator.
Parameters: |
|
---|---|
Returns: |
|
predict(X, copy=True)
[source]
Apply the dimension reduction learned on the train data.
Parameters: |
|
---|
This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space.
score(X, y, sample_weight=None)
[source]
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: |
|
---|---|
Returns: |
|
set_params(**params)
[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: |
|
---|
transform(X, Y=None, copy=True)
[source]
Apply the dimension reduction learned on the train data.
Parameters: |
|
---|---|
Returns: |
|
sklearn.cross_decomposition.CCA
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.CCA.html