sklearn.datasets.fetch_california_housing
  - 
sklearn.datasets.fetch_california_housing(data_home=None, download_if_missing=True, return_X_y=False) [source]
  - 
Load the California housing dataset (regression).
    
| Samples total |  20640 |  
 
| Dimensionality |  8 |  
 
| Features |  real |  
 
| Target |  real 0.15 - 5. |  
  
 Read more in the User Guide.
     
| Parameters: | 
 - 
data_home : optional, default: None   - 
Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.    - 
download_if_missing : optional, default=True   - 
If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site.    - 
return_X_y : boolean, default=False.   - 
If True, returns (data.data, data.target) instead of a Bunch object.        |  
 
| Returns: | 
 - 
dataset : dict-like object with the following attributes:    - 
dataset.data : ndarray, shape [20640, 8]   - 
Each row corresponding to the 8 feature values in order.    - 
dataset.target : numpy array of shape (20640,)   - 
Each value corresponds to the average house value in units of 100,000.    - 
dataset.feature_names : array of length 8   - 
Array of ordered feature names used in the dataset.    - 
dataset.DESCR : string   - 
Description of the California housing dataset.    - 
(data, target) : tuple if return_X_y is True   - 
 
     |  
  
 Notes
 This dataset consists of 20,640 samples and 9 features.
  
  Examples using sklearn.datasets.fetch_california_housing