sklearn.datasets.fetch_california_housing
-
sklearn.datasets.fetch_california_housing(data_home=None, download_if_missing=True, return_X_y=False)
[source]
-
Load the California housing dataset (regression).
Samples total | 20640 |
Dimensionality | 8 |
Features | real |
Target | real 0.15 - 5. |
Read more in the User Guide.
Parameters: |
-
data_home : optional, default: None -
Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders. -
download_if_missing : optional, default=True -
If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. -
return_X_y : boolean, default=False. -
If True, returns (data.data, data.target) instead of a Bunch object. |
Returns: |
-
dataset : dict-like object with the following attributes: -
dataset.data : ndarray, shape [20640, 8] -
Each row corresponding to the 8 feature values in order. -
dataset.target : numpy array of shape (20640,) -
Each value corresponds to the average house value in units of 100,000. -
dataset.feature_names : array of length 8 -
Array of ordered feature names used in the dataset. -
dataset.DESCR : string -
Description of the California housing dataset. -
(data, target) : tuple if return_X_y is True -
|
Notes
This dataset consists of 20,640 samples and 9 features.
Examples using sklearn.datasets.fetch_california_housing