sklearn.datasets.fetch_covtype
-
sklearn.datasets.fetch_covtype(data_home=None, download_if_missing=True, random_state=None, shuffle=False, return_X_y=False)
[source]
-
Load the covertype dataset (classification).
Download it if necessary.
Classes | 7 |
Samples total | 581012 |
Dimensionality | 54 |
Features | int |
Read more in the User Guide.
Parameters: |
-
data_home : string, optional -
Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders. -
download_if_missing : boolean, default=True -
If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. -
random_state : int, RandomState instance or None (default) -
Determines random number generation for dataset shuffling. Pass an int for reproducible output across multiple function calls. See Glossary. -
shuffle : bool, default=False -
Whether to shuffle dataset. -
return_X_y : boolean, default=False. -
If True, returns (data.data, data.target) instead of a Bunch object. |
Returns: |
-
dataset : dict-like object with the following attributes: -
dataset.data : numpy array of shape (581012, 54) -
Each row corresponds to the 54 features in the dataset. -
dataset.target : numpy array of shape (581012,) -
Each value corresponds to one of the 7 forest covertypes with values ranging between 1 to 7. -
dataset.DESCR : string -
Description of the forest covertype dataset. -
(data, target) : tuple if return_X_y is True -
|