sklearn.datasets.fetch_olivetti_faces
  - 
sklearn.datasets.fetch_olivetti_faces(data_home=None, shuffle=False, random_state=0, download_if_missing=True) [source]
  - 
Load the Olivetti faces data-set from AT&T (classification).
 Download it if necessary.
    
| Classes |  40 |  
 
| Samples total |  400 |  
 
| Dimensionality |  4096 |  
 
| Features |  real, between 0 and 1 |  
  
 Read more in the User Guide.
     
| Parameters: | 
 - 
data_home : optional, default: None   - 
Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.    - 
shuffle : boolean, optional   - 
If True the order of the dataset is shuffled to avoid having images of the same person grouped.    - 
random_state : int, RandomState instance or None (default=0)   - 
Determines random number generation for dataset shuffling. Pass an int for reproducible output across multiple function calls. See Glossary.    - 
download_if_missing : optional, True by default   - 
If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site.       |  
 
| Returns: | 
 - An object with the following attributes:
   - 
data : numpy array of shape (400, 4096)   - 
Each row corresponds to a ravelled face image of original size 64 x 64 pixels.    - 
images : numpy array of shape (400, 64, 64)   - 
Each row is a face image corresponding to one of the 40 subjects of the dataset.    - 
target : numpy array of shape (400, )   - 
Labels associated to each face image. Those labels are ranging from 0-39 and correspond to the Subject IDs.    - 
DESCR : string   - 
Description of the modified Olivetti Faces Dataset.       |  
  
  
  Examples using sklearn.datasets.fetch_olivetti_faces