sklearn.datasets.make_friedman2(n_samples=100, noise=0.0, random_state=None)
[source]
Generate the “Friedman #2” regression problem
This dataset is described in Friedman [1] and Breiman [2].
Inputs X
are 4 independent features uniformly distributed on the intervals:
0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11.
The output y
is created according to the formula:
y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1).
Read more in the User Guide.
Parameters: |
|
---|---|
Returns: |
|
[1] | J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991. |
[2] | L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996. |
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman2.html