W3cubDocs

/scikit-learn

sklearn.ensemble.VotingClassifier

class sklearn.ensemble.VotingClassifier(estimators, voting=’hard’, weights=None, n_jobs=None, flatten_transform=None) [source]

Soft Voting/Majority Rule classifier for unfitted estimators.

New in version 0.17.

Read more in the User Guide.

Parameters:
estimators : list of (string, estimator) tuples

Invoking the fit method on the VotingClassifier will fit clones of those original estimators that will be stored in the class attribute self.estimators_. An estimator can be set to None using set_params.

voting : str, {‘hard’, ‘soft’} (default=’hard’)

If ‘hard’, uses predicted class labels for majority rule voting. Else if ‘soft’, predicts the class label based on the argmax of the sums of the predicted probabilities, which is recommended for an ensemble of well-calibrated classifiers.

weights : array-like, shape = [n_classifiers], optional (default=`None`)

Sequence of weights (float or int) to weight the occurrences of predicted class labels (hard voting) or class probabilities before averaging (soft voting). Uses uniform weights if None.

n_jobs : int or None, optional (default=None)

The number of jobs to run in parallel for fit. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.

flatten_transform : bool, optional (default=None)

Affects shape of transform output only when voting=’soft’ If voting=’soft’ and flatten_transform=True, transform method returns matrix with shape (n_samples, n_classifiers * n_classes). If flatten_transform=False, it returns (n_classifiers, n_samples, n_classes).

Attributes:
estimators_ : list of classifiers

The collection of fitted sub-estimators as defined in estimators that are not None.

named_estimators_ : Bunch object, a dictionary with attribute access

Attribute to access any fitted sub-estimators by name.

New in version 0.20.

classes_ : array-like, shape = [n_predictions]

The classes labels.

Examples

>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.ensemble import RandomForestClassifier, VotingClassifier
>>> clf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial',
...                           random_state=1)
>>> clf2 = RandomForestClassifier(n_estimators=50, random_state=1)
>>> clf3 = GaussianNB()
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> eclf1 = VotingClassifier(estimators=[
...         ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')
>>> eclf1 = eclf1.fit(X, y)
>>> print(eclf1.predict(X))
[1 1 1 2 2 2]
>>> np.array_equal(eclf1.named_estimators_.lr.predict(X),
...                eclf1.named_estimators_['lr'].predict(X))
True
>>> eclf2 = VotingClassifier(estimators=[
...         ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
...         voting='soft')
>>> eclf2 = eclf2.fit(X, y)
>>> print(eclf2.predict(X))
[1 1 1 2 2 2]
>>> eclf3 = VotingClassifier(estimators=[
...        ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
...        voting='soft', weights=[2,1,1],
...        flatten_transform=True)
>>> eclf3 = eclf3.fit(X, y)
>>> print(eclf3.predict(X))
[1 1 1 2 2 2]
>>> print(eclf3.transform(X).shape)
(6, 6)
>>>

Methods

fit(X, y[, sample_weight]) Fit the estimators.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get the parameters of the VotingClassifier
predict(X) Predict class labels for X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set_params(**params) Setting the parameters for the voting classifier
transform(X) Return class labels or probabilities for X for each estimator.
__init__(estimators, voting=’hard’, weights=None, n_jobs=None, flatten_transform=None) [source]
fit(X, y, sample_weight=None) [source]

Fit the estimators.

Parameters:
X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the number of features.

y : array-like, shape = [n_samples]

Target values.

sample_weight : array-like, shape = [n_samples] or None

Sample weights. If None, then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights.

Returns:
self : object
fit_transform(X, y=None, **fit_params) [source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters:
X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns:
X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True) [source]

Get the parameters of the VotingClassifier

Parameters:
deep : bool

Setting it to True gets the various classifiers and the parameters of the classifiers as well

predict(X) [source]

Predict class labels for X.

Parameters:
X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the number of features.

Returns:
maj : array-like, shape = [n_samples]

Predicted class labels.

predict_proba

Compute probabilities of possible outcomes for samples in X.

Parameters:
X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the number of features.

Returns:
avg : array-like, shape = [n_samples, n_classes]

Weighted average probability for each class per sample.

score(X, y, sample_weight=None) [source]

Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters:
X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True labels for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns:
score : float

Mean accuracy of self.predict(X) wrt. y.

set_params(**params) [source]

Setting the parameters for the voting classifier

Valid parameter keys can be listed with get_params().

Parameters:
**params : keyword arguments

Specific parameters using e.g. set_params(parameter_name=new_value) In addition, to setting the parameters of the VotingClassifier, the individual classifiers of the VotingClassifier can also be set or replaced by setting them to None.

Examples

# In this example, the RandomForestClassifier is removed clf1 = LogisticRegression() clf2 = RandomForestClassifier() eclf = VotingClassifier(estimators=[(‘lr’, clf1), (‘rf’, clf2)] eclf.set_params(rf=None)

transform(X) [source]

Return class labels or probabilities for X for each estimator.

Parameters:
X : {array-like, sparse matrix}, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the number of features.

Returns:
probabilities_or_labels
If voting=’soft’ and flatten_transform=True:

returns array-like of shape (n_classifiers, n_samples * n_classes), being class probabilities calculated by each classifier.

If voting=’soft’ and `flatten_transform=False:

array-like of shape (n_classifiers, n_samples, n_classes)

If voting=’hard’:

array-like of shape (n_samples, n_classifiers), being class labels predicted by each classifier.

Examples using sklearn.ensemble.VotingClassifier

© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html