class sklearn.gaussian_process.kernels.Exponentiation(kernel, exponent)
[source]
Exponentiate kernel by given exponent.
The resulting kernel is defined as k_exp(X, Y) = k(X, Y) ** exponent
New in version 0.18.
Parameters: |
|
---|---|
Attributes: |
|
__call__ (X[, Y, eval_gradient]) | Return the kernel k(X, Y) and optionally its gradient. |
clone_with_theta (theta) | Returns a clone of self with given hyperparameters theta. |
diag (X) | Returns the diagonal of the kernel k(X, X). |
get_params ([deep]) | Get parameters of this kernel. |
is_stationary () | Returns whether the kernel is stationary. |
set_params (**params) | Set the parameters of this kernel. |
__init__(kernel, exponent)
[source]
__call__(X, Y=None, eval_gradient=False)
[source]
Return the kernel k(X, Y) and optionally its gradient.
Parameters: |
|
---|---|
Returns: |
|
bounds
Returns the log-transformed bounds on the theta.
Returns: |
|
---|
clone_with_theta(theta)
[source]
Returns a clone of self with given hyperparameters theta.
Parameters: |
|
---|
diag(X)
[source]
Returns the diagonal of the kernel k(X, X).
The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.
Parameters: |
|
---|---|
Returns: |
|
get_params(deep=True)
[source]
Get parameters of this kernel.
Parameters: |
|
---|---|
Returns: |
|
hyperparameters
Returns a list of all hyperparameter.
is_stationary()
[source]
Returns whether the kernel is stationary.
n_dims
Returns the number of non-fixed hyperparameters of the kernel.
set_params(**params)
[source]
Set the parameters of this kernel.
The method works on simple kernels as well as on nested kernels. The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Returns: |
|
---|
theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.
Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale.
Returns: |
|
---|
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Exponentiation.html