3.2.4.1.8. sklearn.linear_model.OrthogonalMatchingPursuitCV
-
class sklearn.linear_model.OrthogonalMatchingPursuitCV(copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=’warn’, n_jobs=None, verbose=False)
[source]
-
Cross-validated Orthogonal Matching Pursuit model (OMP)
Read more in the User Guide.
Parameters: |
-
copy : bool, optional -
Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. -
fit_intercept : boolean, optional -
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). -
normalize : boolean, optional, default True -
This parameter is ignored when fit_intercept is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use sklearn.preprocessing.StandardScaler before calling fit on an estimator with normalize=False . -
max_iter : integer, optional -
Maximum numbers of iterations to perform, therefore maximum features to include. 10% of n_features but at least 5 if available. -
cv : int, cross-validation generator or an iterable, optional -
Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, KFold is used. Refer User Guide for the various cross-validation strategies that can be used here. Changed in version 0.20: cv default value if None will change from 3-fold to 5-fold in v0.22. -
n_jobs : int or None, optional (default=None) -
Number of CPUs to use during the cross validation. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details. -
verbose : boolean or integer, optional -
Sets the verbosity amount |
Attributes: |
-
intercept_ : float or array, shape (n_targets,) -
Independent term in decision function. -
coef_ : array, shape (n_features,) or (n_targets, n_features) -
Parameter vector (w in the problem formulation). -
n_nonzero_coefs_ : int -
Estimated number of non-zero coefficients giving the best mean squared error over the cross-validation folds. -
n_iter_ : int or array-like -
Number of active features across every target for the model refit with the best hyperparameters got by cross-validating across all folds. |
Examples
>>> from sklearn.linear_model import OrthogonalMatchingPursuitCV
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=100, n_informative=10,
... noise=4, random_state=0)
>>> reg = OrthogonalMatchingPursuitCV(cv=5).fit(X, y)
>>> reg.score(X, y)
0.9991...
>>> reg.n_nonzero_coefs_
10
>>> reg.predict(X[:1,])
array([-78.3854...])
Methods
fit (X, y) | Fit the model using X, y as training data. |
get_params ([deep]) | Get parameters for this estimator. |
predict (X) | Predict using the linear model |
score (X, y[, sample_weight]) | Returns the coefficient of determination R^2 of the prediction. |
set_params (**params) | Set the parameters of this estimator. |
-
__init__(copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=’warn’, n_jobs=None, verbose=False)
[source]
-
fit(X, y)
[source]
-
Fit the model using X, y as training data.
Parameters: |
-
X : array-like, shape [n_samples, n_features] -
Training data. -
y : array-like, shape [n_samples] -
Target values. Will be cast to X’s dtype if necessary |
Returns: |
-
self : object -
returns an instance of self. |
-
get_params(deep=True)
[source]
-
Get parameters for this estimator.
Parameters: |
-
deep : boolean, optional -
If True, will return the parameters for this estimator and contained subobjects that are estimators. |
Returns: |
-
params : mapping of string to any -
Parameter names mapped to their values. |
-
predict(X)
[source]
-
Predict using the linear model
Parameters: |
-
X : array_like or sparse matrix, shape (n_samples, n_features) -
Samples. |
Returns: |
-
C : array, shape (n_samples,) -
Returns predicted values. |
-
score(X, y, sample_weight=None)
[source]
-
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: |
-
X : array-like, shape = (n_samples, n_features) -
Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator. -
y : array-like, shape = (n_samples) or (n_samples, n_outputs) -
True values for X. -
sample_weight : array-like, shape = [n_samples], optional -
Sample weights. |
Returns: |
-
score : float -
R^2 of self.predict(X) wrt. y. |
-
set_params(**params)
[source]
-
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
3.2.4.1.8.1. Examples using sklearn.linear_model.OrthogonalMatchingPursuitCV