sklearn.metrics.auc(x, y, reorder=’deprecated’)
[source]
Compute Area Under the Curve (AUC) using the trapezoidal rule
This is a general function, given points on a curve. For computing the area under the ROC-curve, see roc_auc_score
. For an alternative way to summarize a precision-recall curve, see average_precision_score
.
Parameters: |
|
---|---|
Returns: |
|
See also
roc_auc_score
average_precision_score
precision_recall_curve
>>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2) >>> metrics.auc(fpr, tpr) 0.75
sklearn.metrics.auc
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.auc.html