class sklearn.preprocessing.KernelCenterer [source]
Center a kernel matrix
Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False).
Read more in the User Guide.
>>> from sklearn.preprocessing import KernelCenterer
>>> from sklearn.metrics.pairwise import pairwise_kernels
>>> X = [[ 1., -2.,  2.],
...      [ -2.,  1.,  3.],
...      [ 4.,  1., -2.]]
>>> K = pairwise_kernels(X, metric='linear')
>>> K
array([[  9.,   2.,  -2.],
       [  2.,  14., -13.],
       [ -2., -13.,  21.]])
>>> transformer = KernelCenterer().fit(K)
>>> transformer
KernelCenterer()
>>> transformer.transform(K)
array([[  5.,   0.,  -5.],
       [  0.,  14., -14.],
       [ -5., -14.,  19.]])
 
fit(K[, y]) |  Fit KernelCenterer | 
fit_transform(X[, y]) |  Fit to data, then transform it. | 
get_params([deep]) |  Get parameters for this estimator. | 
set_params(**params) |  Set the parameters of this estimator. | 
transform(K[, y, copy]) |  Center kernel matrix. | 
__init__() [source]
fit(K, y=None) [source]
Fit KernelCenterer
| Parameters: | 
  |  
|---|---|
| Returns: | 
  |  
fit_transform(X, y=None, **fit_params) [source]
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
| Parameters: | 
  |  
|---|---|
| Returns: | 
  |  
get_params(deep=True) [source]
Get parameters for this estimator.
| Parameters: | 
  |  
|---|---|
| Returns: | 
  |  
set_params(**params) [source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
| Returns: | 
  |  
|---|
transform(K, y=’deprecated’, copy=True) [source]
Center kernel matrix.
| Parameters: | 
  |  
|---|---|
| Returns: | 
  |  
    © 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
    http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KernelCenterer.html