Parameters: |
-
X : array-like, dtype=float64, size=[n_samples, n_features] -
Y : array, dtype=float64, size=[n_samples] -
target vector -
svm_type : {0, 1, 2, 3, 4}, optional -
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR respectively. 0 by default. -
kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}, optional -
Kernel to use in the model: linear, polynomial, RBF, sigmoid or precomputed. ‘rbf’ by default. -
degree : int32, optional -
Degree of the polynomial kernel (only relevant if kernel is set to polynomial), 3 by default. -
gamma : float64, optional -
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other kernels. 0.1 by default. -
coef0 : float64, optional -
Independent parameter in poly/sigmoid kernel. 0 by default. -
tol : float64, optional -
Numeric stopping criterion (WRITEME). 1e-3 by default. -
C : float64, optional -
C parameter in C-Support Vector Classification. 1 by default. -
nu : float64, optional -
0.5 by default. -
epsilon : double, optional -
0.1 by default. -
class_weight : array, dtype float64, shape (n_classes,), optional -
np.empty(0) by default. -
sample_weight : array, dtype float64, shape (n_samples,), optional -
np.empty(0) by default. -
shrinking : int, optional -
1 by default. -
probability : int, optional -
0 by default. -
cache_size : float64, optional -
Cache size for gram matrix columns (in megabytes). 100 by default. -
max_iter : int (-1 for no limit), optional. -
Stop solver after this many iterations regardless of accuracy (XXX Currently there is no API to know whether this kicked in.) -1 by default. -
random_seed : int, optional -
Seed for the random number generator used for probability estimates. 0 by default. |
Returns: |
-
support : array, shape=[n_support] -
index of support vectors -
support_vectors : array, shape=[n_support, n_features] -
support vectors (equivalent to X[support]). Will return an empty array in the case of precomputed kernel. -
n_class_SV : array -
number of support vectors in each class. -
sv_coef : array -
coefficients of support vectors in decision function. -
intercept : array -
intercept in decision function -
probA, probB : array -
probability estimates, empty array for probability=False |