sklearn.svm.SVR
-
class sklearn.svm.SVR(kernel=’rbf’, degree=3, gamma=’auto_deprecated’, coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)
[source]
-
Epsilon-Support Vector Regression.
The free parameters in the model are C and epsilon.
The implementation is based on libsvm.
Read more in the User Guide.
Parameters: |
-
kernel : string, optional (default=’rbf’) -
Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to precompute the kernel matrix. -
degree : int, optional (default=3) -
Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels. -
gamma : float, optional (default=’auto’) -
Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. Current default is ‘auto’ which uses 1 / n_features, if gamma='scale' is passed then it uses 1 / (n_features * X.std()) as value of gamma. The current default of gamma, ‘auto’, will change to ‘scale’ in version 0.22. ‘auto_deprecated’, a deprecated version of ‘auto’ is used as a default indicating that no explicit value of gamma was passed. -
coef0 : float, optional (default=0.0) -
Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’. -
tol : float, optional (default=1e-3) -
Tolerance for stopping criterion. -
C : float, optional (default=1.0) -
Penalty parameter C of the error term. -
epsilon : float, optional (default=0.1) -
Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. -
shrinking : boolean, optional (default=True) -
Whether to use the shrinking heuristic. -
cache_size : float, optional -
Specify the size of the kernel cache (in MB). -
verbose : bool, default: False -
Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. -
max_iter : int, optional (default=-1) -
Hard limit on iterations within solver, or -1 for no limit. |
Attributes: |
-
support_ : array-like, shape = [n_SV] -
Indices of support vectors. -
support_vectors_ : array-like, shape = [nSV, n_features] -
Support vectors. -
dual_coef_ : array, shape = [1, n_SV] -
Coefficients of the support vector in the decision function. -
coef_ : array, shape = [1, n_features] -
Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. coef_ is readonly property derived from dual_coef_ and support_vectors_ . -
intercept_ : array, shape = [1] -
Constants in decision function. |
See also
-
NuSVR
- Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors.
-
LinearSVR
- Scalable Linear Support Vector Machine for regression implemented using liblinear.
Examples
>>> from sklearn.svm import SVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = SVR(gamma='scale', C=1.0, epsilon=0.2)
>>> clf.fit(X, y)
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='scale',
kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
Methods
fit (X, y[, sample_weight]) | Fit the SVM model according to the given training data. |
get_params ([deep]) | Get parameters for this estimator. |
predict (X) | Perform regression on samples in X. |
score (X, y[, sample_weight]) | Returns the coefficient of determination R^2 of the prediction. |
set_params (**params) | Set the parameters of this estimator. |
-
__init__(kernel=’rbf’, degree=3, gamma=’auto_deprecated’, coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)
[source]
-
fit(X, y, sample_weight=None)
[source]
-
Fit the SVM model according to the given training data.
Parameters: |
-
X : {array-like, sparse matrix}, shape (n_samples, n_features) -
Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel=”precomputed”, the expected shape of X is (n_samples, n_samples). -
y : array-like, shape (n_samples,) -
Target values (class labels in classification, real numbers in regression) -
sample_weight : array-like, shape (n_samples,) -
Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. |
Returns: |
-
self : object |
Notes
If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied.
If X is a dense array, then the other methods will not support sparse matrices as input.
-
get_params(deep=True)
[source]
-
Get parameters for this estimator.
Parameters: |
-
deep : boolean, optional -
If True, will return the parameters for this estimator and contained subobjects that are estimators. |
Returns: |
-
params : mapping of string to any -
Parameter names mapped to their values. |
-
predict(X)
[source]
-
Perform regression on samples in X.
For an one-class model, +1 (inlier) or -1 (outlier) is returned.
Parameters: |
-
X : {array-like, sparse matrix}, shape (n_samples, n_features) -
For kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train). |
Returns: |
-
y_pred : array, shape (n_samples,) |
-
score(X, y, sample_weight=None)
[source]
-
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: |
-
X : array-like, shape = (n_samples, n_features) -
Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator. -
y : array-like, shape = (n_samples) or (n_samples, n_outputs) -
True values for X. -
sample_weight : array-like, shape = [n_samples], optional -
Sample weights. |
Returns: |
-
score : float -
R^2 of self.predict(X) wrt. y. |
-
set_params(**params)
[source]
-
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Examples using sklearn.svm.SVR