sklearn.utils.extmath.randomized_range_finder
-
sklearn.utils.extmath.randomized_range_finder(A, size, n_iter, power_iteration_normalizer=’auto’, random_state=None)
[source]
-
Computes an orthonormal matrix whose range approximates the range of A.
Parameters: |
-
A : 2D array -
The input data matrix -
size : integer -
Size of the return array -
n_iter : integer -
Number of power iterations used to stabilize the result -
power_iteration_normalizer : ‘auto’ (default), ‘QR’, ‘LU’, ‘none’ -
Whether the power iterations are normalized with step-by-step QR factorization (the slowest but most accurate), ‘none’ (the fastest but numerically unstable when n_iter is large, e.g. typically 5 or larger), or ‘LU’ factorization (numerically stable but can lose slightly in accuracy). The ‘auto’ mode applies no normalization if n_iter <= 2 and switches to LU otherwise. -
random_state : int, RandomState instance or None, optional (default=None) -
The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random . |
Returns: |
-
Q : 2D array -
A (size x size) projection matrix, the range of which approximates well the range of the input matrix A. |
Notes
Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061
An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014