sklearn.utils.resample(*arrays, **options)
[source]
Resample arrays or sparse matrices in a consistent way
The default strategy implements one step of the bootstrapping procedure.
Parameters: |
|
---|---|
Returns: |
|
Other Parameters: | |
|
See also
It is possible to mix sparse and dense arrays in the same run:
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import resample >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0) >>> X array([[1., 0.], [2., 1.], [1., 0.]]) >>> X_sparse <3x2 sparse matrix of type '<... 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[1., 0.], [2., 1.], [1., 0.]]) >>> y array([0, 1, 0]) >>> resample(y, n_samples=2, random_state=0) array([0, 1])
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html