statsmodels.discrete.discrete_model.CountModel
  - 
class statsmodels.discrete.discrete_model.CountModel(endog, exog, offset=None, exposure=None, missing='none', **kwargs) [source]
  - 
Methods
    
cdf(X) |  The cumulative distribution function of the model. |  
 
cov_params_func_l1(likelihood_model, xopt, …) |  Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. |  
 
fit([start_params, method, maxiter, …]) |  Fit the model using maximum likelihood. |  
 
fit_regularized([start_params, method, …]) |  Fit the model using a regularized maximum likelihood. |  
 
from_formula(formula, data[, subset, drop_cols]) |  Create a Model from a formula and dataframe. |  
 
hessian(params) |  The Hessian matrix of the model |  
 
information(params) |  Fisher information matrix of model |  
 
initialize() |  Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model. |  
 
loglike(params) |  Log-likelihood of model. |  
 
pdf(X) |  The probability density (mass) function of the model. |  
 
predict(params[, exog, exposure, offset, linear]) |  Predict response variable of a count model given exogenous variables. |  
 
score(params) |  Score vector of model. |  
  
 Attributes
    
endog_names |  Names of endogenous variables |  
 
exog_names |  Names of exogenous variables |